tclopess's picture
Update app.py
b881e33 verified
raw
history blame
2.02 kB
"""import gradio as gr
import onnxruntime as rt
from transformers import AutoTokenizer
import torch, json
tokenizer = AutoTokenizer.from_pretrained("neuralmind/bert-large-portuguese-cased")
with open("genre_types_encoded.json", "r") as fp:
encode_genre_types = json.load(fp)
genres = list(encode_genre_types.keys())
inf_session = rt.InferenceSession('movie-classifier-quantized.onnx')
input_name = inf_session.get_inputs()[0].name
output_name = inf_session.get_outputs()[0].name
def classify_movie_genre(sinopse):
input_ids = tokenizer(sinopse)['input_ids'][:512]
logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
logits = torch.FloatTensor(logits)
probs = torch.sigmoid(logits)[0]
return dict(zip(genres, map(float, probs)))
label = gr.outputs.Label(num_top_classes=5)
iface = gr.Interface(fn=classify_movie_genre, inputs="text", outputs=label)
iface.launch(inline=False)"""
import gradio as gr
import onnxruntime as rt
from transformers import AutoTokenizer
import torch, json
tokenizer = AutoTokenizer.from_pretrained("neuralmind/bert-large-portuguese-cased")
with open("genre_types_encoded.json", "r") as fp:
encode_genre_types = json.load(fp)
genres = list(encode_genre_types.keys())
inf_session = rt.InferenceSession('movie-classifier-quantized.onnx')
input_name = inf_session.get_inputs()[0].name
output_name = inf_session.get_outputs()[0].name
def classify_movie_genre(sinopse):
input_ids = tokenizer(sinopse)['input_ids'][:512]
logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
logits = torch.FloatTensor(logits)
probs = torch.sigmoid(logits)[0]
return dict(zip(genres, map(float, probs)))
app_examples = [
["asasasa"],
["ddddd"],
["fffff"],
["ggggg"],
["aaaaaa"]
]
inputs = [
gr.Textbox(label="text", value=app_examples[0][0]),
]
label = gr.outputs.Label(num_top_classes=4)
iface = gr.Interface(fn=classify_movie_genre, inputs=inputs, outputs=label, examples=app_examples)
iface.launch(inline=False)