Spaces:
Sleeping
Sleeping
""" | |
from transformers import pipeline | |
import gradio as gr | |
import torch | |
model = "neuralmind/bert-base-portuguese-cased" | |
pipe = pipeline('sentiment-analysis', model=model) | |
def get_sentiment(input_text): | |
return pipe(input_text) | |
iface = gr.Interface(fn=get_sentiment, | |
inputs='text', | |
outputs=['text'], | |
title='Sentiment Analysis', | |
description='Obtenha o sentimento do texto de entrada:' | |
) | |
iface.launch(inline=False)""" | |
from transformers import pipeline | |
import gradio as gr | |
import torch | |
model = "neuralmind/bert-base-portuguese-cased" | |
pipe = pipeline('sentiment-analysis', model=model) | |
def get_sentiment(input_text): | |
return pipe(input_text) | |
results = pipe(input_text) | |
# Extract the label and score | |
label = results[0]['label'] | |
score = results[0]['score'] | |
threshold = 0.5 | |
if label == 'LABEL_1' and score > sentiment_threshold: # Positive sentiment | |
return 'POSITIVO' | |
else label == 'LABEL_0' and score <= sentiment_threshold: # Negative sentiment | |
return 'NEGATIVO' | |
iface = gr.Interface(fn=get_sentiment, | |
inputs='text', | |
outputs='text', | |
title='Sentiment Analysis', | |
description='Obtenha o sentimento do texto de entrada:' | |
) | |
iface.launch(inline=False) | |