Spaces:
Runtime error
Runtime error
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.cuda.amp import custom_bwd, custom_fwd | |
try: | |
import triton | |
import triton.language as tl | |
from . import custom_autotune | |
# code based https://github.com/fpgaminer/GPTQ-triton | |
def matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales, stride_zeros, | |
NO_GROUP: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr): | |
""" | |
Compute the matrix multiplication C = A x B. | |
A is of shape (M, K) float16 | |
B is of shape (K//8, N) int32 | |
C is of shape (M, N) float16 | |
scales is of shape (G, N) float16 | |
zeros is of shape (G, N) float16 | |
g_ptr is of shape (K) int32 | |
""" | |
infearure_per_bits = 32 // bits | |
pid = tl.program_id(axis=0) | |
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) | |
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) | |
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) | |
num_pid_in_group = GROUP_SIZE_M * num_pid_n | |
group_id = pid // num_pid_in_group | |
first_pid_m = group_id * GROUP_SIZE_M | |
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) | |
pid_m = first_pid_m + (pid % group_size_m) | |
pid_n = (pid % num_pid_in_group) // group_size_m | |
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) | |
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) | |
offs_k = tl.arange(0, BLOCK_SIZE_K) | |
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K) | |
a_mask = (offs_am[:, None] < M) | |
# b_ptrs is set up such that it repeats elements along the K axis 8 times | |
b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N) | |
g_ptrs = g_ptr + offs_k | |
# shifter is used to extract the N bits of each element in the 32-bit word from B | |
scales_ptrs = scales_ptr + offs_bn[None, :] | |
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits) | |
if NO_GROUP: | |
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) | |
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) | |
zeros = (zeros >> zeros_shifter[None, :]) & maxq | |
zeros = (zeros + 1) | |
shifter = (offs_k % infearure_per_bits) * bits | |
zeros_shifter = (offs_bn % infearure_per_bits) * bits | |
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) | |
for k in range(0, num_pid_k): | |
g_idx = tl.load(g_ptrs) | |
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop | |
if not NO_GROUP: | |
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) | |
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) | |
zeros = (zeros >> zeros_shifter[None, :]) & maxq | |
zeros = (zeros + 1) | |
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K) | |
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated | |
# Now we need to unpack b (which is N-bit values) into 32-bit values | |
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values | |
b = (b - zeros) * scales # Scale and shift | |
accumulator += tl.dot(a, b) | |
a_ptrs += BLOCK_SIZE_K | |
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk | |
g_ptrs += BLOCK_SIZE_K | |
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :] | |
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N) | |
tl.store(c_ptrs, accumulator, mask=c_mask) | |
def transpose_matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales, | |
stride_zeros, NO_GROUP: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr): | |
""" | |
Compute the matrix multiplication C = A x B. | |
A is of shape (M, N) float16 | |
B is of shape (K//8, N) int32 | |
C is of shape (M, K) float16 | |
scales is of shape (G, N) float16 | |
zeros is of shape (G, N) float16 | |
g_ptr is of shape (K) int32 | |
""" | |
infearure_per_bits = 32 // bits | |
pid = tl.program_id(axis=0) | |
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) | |
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) | |
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) | |
num_pid_in_group = GROUP_SIZE_M * num_pid_k | |
group_id = pid // num_pid_in_group | |
first_pid_m = group_id * GROUP_SIZE_M | |
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) | |
pid_m = first_pid_m + (pid % group_size_m) | |
pid_k = (pid % num_pid_in_group) // group_size_m | |
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) | |
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K) | |
offs_n = tl.arange(0, BLOCK_SIZE_N) | |
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N) | |
a_mask = (offs_am[:, None] < M) | |
# b_ptrs is set up such that it repeats elements along the K axis 8 times | |
b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N) | |
g_ptrs = g_ptr + offs_bk | |
g_idx = tl.load(g_ptrs) | |
# shifter is used to extract the N bits of each element in the 32-bit word from B | |
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales | |
zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros | |
if NO_GROUP: | |
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) | |
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) | |
zeros = (zeros >> zeros_shifter[None, :]) & maxq | |
zeros = (zeros + 1) | |
shifter = (offs_bk % infearure_per_bits) * bits | |
zeros_shifter = (offs_n % infearure_per_bits) * bits | |
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32) | |
for k in range(0, num_pid_n): | |
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop | |
if not NO_GROUP: | |
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) | |
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) | |
zeros = (zeros >> zeros_shifter[None, :]) & maxq | |
zeros = (zeros + 1) | |
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N) | |
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated | |
# Now we need to unpack b (which is N-bit values) into 32-bit values | |
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values | |
b = (b - zeros) * scales # Scale and shift | |
b = tl.trans(b) | |
accumulator += tl.dot(a, b) | |
a_ptrs += BLOCK_SIZE_N | |
b_ptrs += BLOCK_SIZE_N | |
scales_ptrs += BLOCK_SIZE_N | |
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits) | |
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :] | |
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K) | |
tl.store(c_ptrs, accumulator, mask=c_mask) | |
except: | |
print('trioton not installed.') | |
def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq, no_group): | |
with torch.cuda.device(input.device): | |
output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16) | |
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']), ) | |
matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], input.shape[1], bits, maxq, input.stride(0), input.stride(1), qweight.stride(0), | |
qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0), no_group) | |
return output | |
def transpose_matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq, no_group): | |
with torch.cuda.device(input.device): | |
output_dim = (qweight.shape[0] * 32) // bits | |
output = torch.empty((input.shape[0], output_dim), device='cuda', dtype=torch.float16) | |
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_dim, META['BLOCK_SIZE_K']), ) | |
transpose_matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], output_dim, bits, maxq, input.stride(0), input.stride(1), qweight.stride(0), | |
qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0), no_group) | |
return output | |
class QuantLinearFunction(torch.autograd.Function): | |
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq, no_group): | |
output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq, no_group) | |
ctx.save_for_backward(qweight, scales, qzeros, g_idx) | |
ctx.bits, ctx.maxq, ctx.no_group = bits, maxq, no_group | |
return output | |
def backward(ctx, grad_output): | |
qweight, scales, qzeros, g_idx = ctx.saved_tensors | |
bits, maxq, no_group = ctx.bits, ctx.maxq, ctx.no_group | |
grad_input = None | |
if ctx.needs_input_grad[0]: | |
grad_input = transpose_matmul248(grad_output, qweight, scales, qzeros, g_idx, bits, maxq, no_group) | |
return grad_input, None, None, None, None, None, None | |
class QuantLinear(nn.Module): | |
def __init__(self, bits, groupsize, infeatures, outfeatures, bias): | |
super().__init__() | |
if bits not in [2, 4, 8]: | |
raise NotImplementedError("Only 2,4,8 bits are supported.") | |
self.infeatures = infeatures | |
self.outfeatures = outfeatures | |
self.bits = bits | |
self.maxq = 2**self.bits - 1 | |
self.groupsize = groupsize if groupsize != -1 else infeatures | |
self.no_group = math.ceil(infeatures / self.groupsize) == 1 | |
self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)) | |
self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32)) | |
self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16)) | |
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32)) | |
if bias: | |
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16)) | |
else: | |
self.bias = None | |
def pack(self, linear, scales, zeros, g_idx=None): | |
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx | |
scales = scales.t().contiguous() | |
zeros = zeros.t().contiguous() | |
scale_zeros = zeros * scales | |
self.scales = scales.clone().half() | |
if linear.bias is not None: | |
self.bias = linear.bias.clone().half() | |
intweight = [] | |
for idx in range(self.infeatures): | |
intweight.append(torch.round((linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[:, None]) | |
intweight = torch.cat(intweight, dim=1) | |
intweight = intweight.t().contiguous() | |
intweight = intweight.numpy().astype(np.uint32) | |
qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32) | |
i = 0 | |
row = 0 | |
while row < qweight.shape[0]: | |
if self.bits in [2, 4, 8]: | |
for j in range(i, i + (32 // self.bits)): | |
qweight[row] |= intweight[j] << (self.bits * (j - i)) | |
i += 32 // self.bits | |
row += 1 | |
else: | |
raise NotImplementedError("Only 2,4,8 bits are supported.") | |
qweight = qweight.astype(np.int32) | |
self.qweight = torch.from_numpy(qweight) | |
zeros -= 1 | |
zeros = zeros.numpy().astype(np.uint32) | |
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32) | |
i = 0 | |
col = 0 | |
while col < qzeros.shape[1]: | |
if self.bits in [2, 4, 8]: | |
for j in range(i, i + (32 // self.bits)): | |
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) | |
i += 32 // self.bits | |
col += 1 | |
else: | |
raise NotImplementedError("Only 2,4,8 bits are supported.") | |
qzeros = qzeros.astype(np.int32) | |
self.qzeros = torch.from_numpy(qzeros) | |
def forward(self, x): | |
out_shape = x.shape[:-1] + (self.outfeatures, ) | |
out = QuantLinearFunction.apply(x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx, self.bits, self.maxq, self.no_group) | |
out = out + self.bias if self.bias is not None else out | |
return out.reshape(out_shape) | |
def make_quant_linear(module, names, bits, groupsize, name=''): | |
if isinstance(module, QuantLinear): | |
return | |
for attr in dir(module): | |
tmp = getattr(module, attr) | |
name1 = name + '.' + attr if name != '' else attr | |
if name1 in names: | |
delattr(module, attr) | |
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None)) | |
for name1, child in module.named_children(): | |
make_quant_linear(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1) | |
def autotune_warmup_linear(model, transpose=False): | |
""" | |
Pre-tunes the quantized kernel | |
""" | |
from tqdm import tqdm | |
kn_values = {} | |
for _, m in model.named_modules(): | |
if not isinstance(m, QuantLinear): | |
continue | |
k = m.infeatures | |
n = m.outfeatures | |
if (k, n) not in kn_values: | |
kn_values[(k, n)] = (m.qweight.cuda(), m.scales.cuda(), m.qzeros.cuda(), m.g_idx.cuda(), m.bits, m.maxq, m.no_group) | |
print(f'Found {len(kn_values)} unique KN Linear values.') | |
print('Warming up autotune cache ...') | |
with torch.no_grad(): | |
for m in tqdm(range(0, 12)): | |
m = 2**m # [1, 2048] | |
for (k, n), (qweight, scales, qzeros, g_idx, bits, maxq, no_group) in kn_values.items(): | |
a = torch.randn(m, k, dtype=torch.float16, device='cuda') | |
matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq, no_group) | |
if transpose: | |
a = torch.randn(m, n, dtype=torch.float16, device='cuda') | |
transpose_matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq, no_group) | |
del kn_values | |