chatlawv1 / trlx /examples /nemo_vs_ds_chat.py
teachyourselfcoding's picture
Upload 245 files
fa6856c
# Generates positive movie reviews by tuning a pretrained model on IMDB dataset
# with a sentiment reward function
import json
import os
import sys
from math import floor
from typing import List
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
import trlx
from trlx.data.default_configs import (
TRLConfig,
default_nemo_1_3b_config,
default_ppo_config,
)
def get_positive_score(scores):
"Extract value associated with a positive sentiment from pipeline's output"
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"]
def main(hparams={}):
# Merge sweep config with default config if given
default_config = TRLConfig.update(default_ppo_config().to_dict(), hparams)
cfg_name = os.environ.get("NEMO_CONFIG", "1.3B")
if cfg_name == "1.3B":
nemo_config = default_nemo_1_3b_config()
batch_size = 16
chunk_size = 128
mini_batch_size = 16
unfrozen_layers = -1
elif cfg_name == "6.7B":
nemo_config = default_nemo_1_3b_config()
nemo_config.name = "megatron_gpt_6.7b"
nemo_config.model.num_layers = 32
nemo_config.model.hidden_size = 4096
nemo_config.model.ffn_hidden_size = 16384
nemo_config.model.num_attention_heads = 32
batch_size = 4
mini_batch_size = 4
chunk_size = 16
unfrozen_layers = -1
elif cfg_name == "13B":
nemo_config = default_nemo_1_3b_config()
nemo_config.name = "megatron_gpt_13b"
nemo_config.model.num_layers = 40
nemo_config.model.hidden_size = 5120
nemo_config.model.ffn_hidden_size = 20480
nemo_config.model.num_attention_heads = 40
nemo_config.model.tensor_model_parallel_size = 2
batch_size = 16
mini_batch_size = 4
chunk_size = 16
unfrozen_layers = -1
elif cfg_name == "20B":
nemo_config = default_nemo_1_3b_config()
nemo_config.name = "megatron_gpt_20b"
nemo_config.model.num_layers = 44
nemo_config.model.hidden_size = 6144
nemo_config.model.ffn_hidden_size = 24576
nemo_config.model.num_attention_heads = 64
nemo_config.model.tensor_model_parallel_size = 4
batch_size = 16
mini_batch_size = 2
chunk_size = 16
unfrozen_layers = -1
elif cfg_name == "33B":
nemo_config = default_nemo_1_3b_config()
nemo_config.name = "megatron_gpt_33b"
nemo_config.model.num_layers = 48
nemo_config.model.hidden_size = 7168
nemo_config.model.ffn_hidden_size = 28672
nemo_config.model.num_attention_heads = 56
nemo_config.trainer.num_nodes = 4
nemo_config.trainer.devices = 8
nemo_config.model.tensor_model_parallel_size = 8
batch_size = 32
mini_batch_size = 4
chunk_size = 32
unfrozen_layers = -1
elif cfg_name == "66B":
nemo_config = default_nemo_1_3b_config()
nemo_config.trainer.num_nodes = 4
nemo_config.trainer.devices = 8
nemo_config.name = "megatron_gpt_66b"
nemo_config.model.num_layers = 64
nemo_config.model.hidden_size = 9216
nemo_config.model.ffn_hidden_size = 36864
nemo_config.model.num_attention_heads = 72
nemo_config.model.tensor_model_parallel_size = 8
batch_size = 32
mini_batch_size = 2
chunk_size = 32
unfrozen_layers = 32
else:
raise ValueError(f"Unknown NEMO_CONFIG: {cfg_name}")
config = default_config.evolve(
train=dict(
# set automatically
total_steps=None,
seq_length=512,
batch_size=batch_size,
minibatch_size=mini_batch_size,
epochs=int(1e6),
eval_interval=1e6,
trainer="NeMoPPOTrainer",
trainer_kwargs=dict(
pretrained_model=None, # f"/mnt/hdd/nemo-megatron-gpt-{cfg_name}/",
megatron_cfg=nemo_config,
),
checkpoint_interval=1e6,
checkpoint_dir=f"nemo_{cfg_name}_ppo_ds_chat_benchmark",
seed=2023,
project_name="trlxnemo",
tags=["nemo", "ppo", "benchmark", cfg_name],
),
optimizer=dict(
name="distributed_fused_adam",
kwargs=dict(
lr=6.001e-5,
weight_decay=1e-06,
eps=1.0e-8,
betas=(0.9, 0.95),
),
),
scheduler=dict(
name="CosineAnnealing",
),
model=dict(num_layers_unfrozen=unfrozen_layers),
method=dict(
num_rollouts=chunk_size,
init_kl_coef=0.05,
scale_reward="ref",
vf_coef=1,
gen_kwargs=dict(temperature=1.0, max_new_tokens=256, min_new_tokens=256),
chunk_size=chunk_size,
ppo_epochs=1,
),
)
config.scheduler.kwargs = dict(warmup_steps=0, constant_steps=1e12, min_lr=6.0e-5)
rank = int(os.environ["SLURM_PROCID"])
local_rank = rank % 8
reward_model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
reward_tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
reward_model.eval()
reward_model.to("cpu")
def reward_fn(samples: List[str], **kwargs) -> List[float]:
reward_model.to(local_rank)
mbs = max(1, config.method.chunk_size // 2)
for i in range(0, len(samples) // mbs):
inputs = reward_tokenizer(samples[i * mbs : (i + 1) * mbs], return_tensors="pt", padding=True)
inputs = inputs.to(local_rank)
with torch.no_grad():
outputs = reward_model(**inputs)
outputs.logits.cpu()
reward_model.to("cpu")
return [0.5 for _ in samples]
# Take few words off of movies reviews as prompts
dataset = load_dataset("Dahoas/rm-static", "train")
dataset = dataset.shuffle(seed=2023)
# select first 40% of the dataset
dataset = dataset["train"].select(range(floor(len(dataset["train"]) * 0.4)))
world_size = nemo_config.trainer.num_nodes * nemo_config.trainer.devices
dp_world_size = world_size // (
nemo_config.model.tensor_model_parallel_size * nemo_config.model.pipeline_model_parallel_size
)
global_batch_size = config.train.batch_size * dp_world_size
config.train.total_steps = len(dataset) // global_batch_size
print(f"Total steps: {config.train.total_steps=} {len(dataset)=} {global_batch_size=}")
trlx.train(
reward_fn=reward_fn,
prompts=dataset["prompt"],
eval_prompts=["I don't know much about Hungarian underground"] * 256,
config=config,
)
if __name__ == "__main__":
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1])
main(hparams)