Spaces:
Runtime error
Runtime error
# Generates positive movie reviews by tuning a pretrained model on IMDB dataset | |
# with a sentiment reward function | |
import json | |
import os | |
import sys | |
from math import floor | |
from typing import List | |
import torch | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import trlx | |
from trlx.data.default_configs import ( | |
TRLConfig, | |
default_nemo_1_3b_config, | |
default_ppo_config, | |
) | |
def get_positive_score(scores): | |
"Extract value associated with a positive sentiment from pipeline's output" | |
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] | |
def main(hparams={}): | |
# Merge sweep config with default config if given | |
default_config = TRLConfig.update(default_ppo_config().to_dict(), hparams) | |
cfg_name = os.environ.get("NEMO_CONFIG", "1.3B") | |
if cfg_name == "1.3B": | |
nemo_config = default_nemo_1_3b_config() | |
batch_size = 16 | |
chunk_size = 128 | |
mini_batch_size = 16 | |
unfrozen_layers = -1 | |
elif cfg_name == "6.7B": | |
nemo_config = default_nemo_1_3b_config() | |
nemo_config.name = "megatron_gpt_6.7b" | |
nemo_config.model.num_layers = 32 | |
nemo_config.model.hidden_size = 4096 | |
nemo_config.model.ffn_hidden_size = 16384 | |
nemo_config.model.num_attention_heads = 32 | |
batch_size = 4 | |
mini_batch_size = 4 | |
chunk_size = 16 | |
unfrozen_layers = -1 | |
elif cfg_name == "13B": | |
nemo_config = default_nemo_1_3b_config() | |
nemo_config.name = "megatron_gpt_13b" | |
nemo_config.model.num_layers = 40 | |
nemo_config.model.hidden_size = 5120 | |
nemo_config.model.ffn_hidden_size = 20480 | |
nemo_config.model.num_attention_heads = 40 | |
nemo_config.model.tensor_model_parallel_size = 2 | |
batch_size = 16 | |
mini_batch_size = 4 | |
chunk_size = 16 | |
unfrozen_layers = -1 | |
elif cfg_name == "20B": | |
nemo_config = default_nemo_1_3b_config() | |
nemo_config.name = "megatron_gpt_20b" | |
nemo_config.model.num_layers = 44 | |
nemo_config.model.hidden_size = 6144 | |
nemo_config.model.ffn_hidden_size = 24576 | |
nemo_config.model.num_attention_heads = 64 | |
nemo_config.model.tensor_model_parallel_size = 4 | |
batch_size = 16 | |
mini_batch_size = 2 | |
chunk_size = 16 | |
unfrozen_layers = -1 | |
elif cfg_name == "33B": | |
nemo_config = default_nemo_1_3b_config() | |
nemo_config.name = "megatron_gpt_33b" | |
nemo_config.model.num_layers = 48 | |
nemo_config.model.hidden_size = 7168 | |
nemo_config.model.ffn_hidden_size = 28672 | |
nemo_config.model.num_attention_heads = 56 | |
nemo_config.trainer.num_nodes = 4 | |
nemo_config.trainer.devices = 8 | |
nemo_config.model.tensor_model_parallel_size = 8 | |
batch_size = 32 | |
mini_batch_size = 4 | |
chunk_size = 32 | |
unfrozen_layers = -1 | |
elif cfg_name == "66B": | |
nemo_config = default_nemo_1_3b_config() | |
nemo_config.trainer.num_nodes = 4 | |
nemo_config.trainer.devices = 8 | |
nemo_config.name = "megatron_gpt_66b" | |
nemo_config.model.num_layers = 64 | |
nemo_config.model.hidden_size = 9216 | |
nemo_config.model.ffn_hidden_size = 36864 | |
nemo_config.model.num_attention_heads = 72 | |
nemo_config.model.tensor_model_parallel_size = 8 | |
batch_size = 32 | |
mini_batch_size = 2 | |
chunk_size = 32 | |
unfrozen_layers = 32 | |
else: | |
raise ValueError(f"Unknown NEMO_CONFIG: {cfg_name}") | |
config = default_config.evolve( | |
train=dict( | |
# set automatically | |
total_steps=None, | |
seq_length=512, | |
batch_size=batch_size, | |
minibatch_size=mini_batch_size, | |
epochs=int(1e6), | |
eval_interval=1e6, | |
trainer="NeMoPPOTrainer", | |
trainer_kwargs=dict( | |
pretrained_model=None, # f"/mnt/hdd/nemo-megatron-gpt-{cfg_name}/", | |
megatron_cfg=nemo_config, | |
), | |
checkpoint_interval=1e6, | |
checkpoint_dir=f"nemo_{cfg_name}_ppo_ds_chat_benchmark", | |
seed=2023, | |
project_name="trlxnemo", | |
tags=["nemo", "ppo", "benchmark", cfg_name], | |
), | |
optimizer=dict( | |
name="distributed_fused_adam", | |
kwargs=dict( | |
lr=6.001e-5, | |
weight_decay=1e-06, | |
eps=1.0e-8, | |
betas=(0.9, 0.95), | |
), | |
), | |
scheduler=dict( | |
name="CosineAnnealing", | |
), | |
model=dict(num_layers_unfrozen=unfrozen_layers), | |
method=dict( | |
num_rollouts=chunk_size, | |
init_kl_coef=0.05, | |
scale_reward="ref", | |
vf_coef=1, | |
gen_kwargs=dict(temperature=1.0, max_new_tokens=256, min_new_tokens=256), | |
chunk_size=chunk_size, | |
ppo_epochs=1, | |
), | |
) | |
config.scheduler.kwargs = dict(warmup_steps=0, constant_steps=1e12, min_lr=6.0e-5) | |
rank = int(os.environ["SLURM_PROCID"]) | |
local_rank = rank % 8 | |
reward_model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m") | |
reward_tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") | |
reward_model.eval() | |
reward_model.to("cpu") | |
def reward_fn(samples: List[str], **kwargs) -> List[float]: | |
reward_model.to(local_rank) | |
mbs = max(1, config.method.chunk_size // 2) | |
for i in range(0, len(samples) // mbs): | |
inputs = reward_tokenizer(samples[i * mbs : (i + 1) * mbs], return_tensors="pt", padding=True) | |
inputs = inputs.to(local_rank) | |
with torch.no_grad(): | |
outputs = reward_model(**inputs) | |
outputs.logits.cpu() | |
reward_model.to("cpu") | |
return [0.5 for _ in samples] | |
# Take few words off of movies reviews as prompts | |
dataset = load_dataset("Dahoas/rm-static", "train") | |
dataset = dataset.shuffle(seed=2023) | |
# select first 40% of the dataset | |
dataset = dataset["train"].select(range(floor(len(dataset["train"]) * 0.4))) | |
world_size = nemo_config.trainer.num_nodes * nemo_config.trainer.devices | |
dp_world_size = world_size // ( | |
nemo_config.model.tensor_model_parallel_size * nemo_config.model.pipeline_model_parallel_size | |
) | |
global_batch_size = config.train.batch_size * dp_world_size | |
config.train.total_steps = len(dataset) // global_batch_size | |
print(f"Total steps: {config.train.total_steps=} {len(dataset)=} {global_batch_size=}") | |
trlx.train( | |
reward_fn=reward_fn, | |
prompts=dataset["prompt"], | |
eval_prompts=["I don't know much about Hungarian underground"] * 256, | |
config=config, | |
) | |
if __name__ == "__main__": | |
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) | |
main(hparams) | |