teapotchat / app.py
zakerytclarke's picture
Update app.py
d6dc06a verified
raw
history blame
15.2 kB
import streamlit as st
from teapotai import TeapotAI, TeapotAISettings
import hashlib
import os
import requests
import time
from langsmith import traceable
##### Begin Library Code
from transformers import pipeline
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from pydantic import BaseModel
from typing import List, Optional
from tqdm import tqdm
import re
import os
class TeapotAISettings(BaseModel):
"""
Pydantic settings model for TeapotAI configuration.
Attributes:
use_rag (bool): Whether to use RAG (Retrieve and Generate).
rag_num_results (int): Number of top documents to retrieve based on similarity.
rag_similarity_threshold (float): Similarity threshold for document relevance.
verbose (bool): Whether to print verbose updates.
log_level (str): The log level for the application (e.g., "info", "debug").
"""
use_rag: bool = True # Whether to use RAG (Retrieve and Generate)
rag_num_results: int = 3 # Number of top documents to retrieve based on similarity
rag_similarity_threshold: float = 0.5 # Similarity threshold for document relevance
verbose: bool = True # Whether to print verbose updates
log_level: str = "info" # Log level setting (e.g., 'info', 'debug')
class TeapotAI:
"""
TeapotAI class that interacts with a language model for text generation and retrieval tasks.
Attributes:
model (str): The model identifier.
model_revision (Optional[str]): The revision/version of the model.
api_key (Optional[str]): API key for accessing the model (if required).
settings (TeapotAISettings): Configuration settings for the AI instance.
generator (callable): The pipeline for text generation.
embedding_model (callable): The pipeline for feature extraction (document embeddings).
documents (List[str]): List of documents for retrieval.
document_embeddings (np.ndarray): Embeddings for the provided documents.
"""
def __init__(self, model_revision: Optional[str] = None, api_key: Optional[str] = None,
documents: List[str] = [], settings: TeapotAISettings = TeapotAISettings()):
"""
Initializes the TeapotAI class with optional model_revision and api_key.
Parameters:
model_revision (Optional[str]): The revision/version of the model to use.
api_key (Optional[str]): The API key for accessing the model if needed.
documents (List[str]): A list of documents for retrieval. Defaults to an empty list.
settings (TeapotAISettings): The settings configuration (defaults to TeapotAISettings()).
"""
self.model = "teapotai/teapotllm"
self.model_revision = model_revision
self.api_key = api_key
self.settings = settings
if self.settings.verbose:
print(""" _____ _ _ ___ __o__ _;;
|_ _|__ __ _ _ __ ___ | |_ / \ |_ _| __ /-___-\__/ /
| |/ _ \/ _` | '_ \ / _ \| __| / _ \ | | ( | |__/
| | __/ (_| | |_) | (_) | |_ / ___ \ | | \_|~~~~~~~|
|_|\___|\__,_| .__/ \___/ \__/ /_/ \_\___| \_____/
|_| """)
if self.settings.verbose:
print(f"Loading Model: {self.model} Revision: {self.model_revision or 'Latest'}")
# self.generator = pipeline("text2text-generation", model=self.model, revision=self.model_revision) if model_revision else pipeline("text2text-generation", model=self.model)
self.tokenizer = AutoTokenizer.from_pretrained(self.model)
model = AutoModelForSeq2SeqLM.from_pretrained(self.model)
model.eval()
# Quantization settings
quantization_dtype = torch.qint8 # or torch.float16
quantization_config = torch.quantization.get_default_qconfig('fbgemm') # or 'onednn'
self.quantized_model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=quantization_dtype
)
self.documents = documents
if self.settings.use_rag and self.documents:
self.embedding_model = pipeline("feature-extraction", model="teapotai/teapotembedding")
self.document_embeddings = self._generate_document_embeddings(self.documents)
def _generate_document_embeddings(self, documents: List[str]) -> np.ndarray:
"""
Generate embeddings for the provided documents using the embedding model.
Parameters:
documents (List[str]): A list of document strings to generate embeddings for.
Returns:
np.ndarray: A NumPy array of document embeddings.
"""
embeddings = []
if self.settings.verbose:
print("Generating embeddings for documents...")
for doc in tqdm(documents, desc="Document Embedding", unit="doc"):
embeddings.append(self.embedding_model(doc)[0][0])
else:
for doc in documents:
embeddings.append(self.embedding_model(doc)[0][0])
return np.array(embeddings)
def rag(self, query: str) -> List[str]:
"""
Perform RAG (Retrieve and Generate) by finding the most relevant documents based on cosine similarity.
Parameters:
query (str): The query string to find relevant documents for.
Returns:
List[str]: A list of the top N most relevant documents.
"""
if not self.settings.use_rag or not self.documents:
return []
query_embedding = self.embedding_model(query)[0][0]
similarities = cosine_similarity([query_embedding], self.document_embeddings)[0]
filtered_indices = [i for i, similarity in enumerate(similarities) if similarity >= self.settings.rag_similarity_threshold]
top_n_indices = sorted(filtered_indices, key=lambda i: similarities[i], reverse=True)[:self.settings.rag_num_results]
return [self.documents[i] for i in top_n_indices]
def generate(self, input_text: str) -> str:
"""
Generate text based on the input string using the teapotllm model.
Parameters:
input_text (str): The text prompt to generate a response for.
Returns:
str: The generated output from the model.
"""
inputs = self.tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = self.quantized_model.generate(inputs["input_ids"], max_length=512)
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
if self.settings.log_level == "debug":
print(input_text)
print(result)
return result
def query(self, query: str, context: str = "") -> str:
"""
Handle a query and context, using RAG if no context is provided, and return a generated response.
Parameters:
query (str): The query string to be answered.
context (str): The context to guide the response. Defaults to an empty string.
Returns:
str: The generated response based on the input query and context.
"""
if self.settings.use_rag and not context:
context = "\n".join(self.rag(query)) # Perform RAG if no context is provided
input_text = f"Context: {context}\nQuery: {query}"
return self.generate(input_text)
def chat(self, conversation_history: List[dict]) -> str:
"""
Engage in a chat by taking a list of previous messages and generating a response.
Parameters:
conversation_history (List[dict]): A list of previous messages, each containing 'content'.
Returns:
str: The generated response based on the conversation history.
"""
chat_history = "".join([message['content'] + "\n" for message in conversation_history])
if self.settings.use_rag:
context_documents = self.rag(chat_history) # Perform RAG on the conversation history
context = "\n".join(context_documents)
chat_history = f"Context: {context}\n" + chat_history
return self.generate(chat_history + "\n" + "agent:")
def extract(self, class_annotation: BaseModel, query: str = "", context: str = "") -> BaseModel:
"""
Extract fields from a Pydantic class annotation by querying and processing each field.
Parameters:
class_annotation (BaseModel): The Pydantic class to extract fields from.
query (str): The query string to guide the extraction. Defaults to an empty string.
context (str): Optional context for the query.
Returns:
BaseModel: An instance of the provided Pydantic class with extracted field values.
"""
if self.settings.use_rag:
context_documents = self.rag(query)
context = "\n".join(context_documents) + context
output = {}
for field_name, field in class_annotation.__fields__.items():
type_annotation = field.annotation
description = field.description
description_annotation = f"({description})" if description else ""
result = self.query(f"Extract the field {field_name} {description_annotation} to a {type_annotation}", context=context)
# Process result based on field type
if type_annotation == bool:
parsed_result = (
True if re.search(r'\b(yes|true)\b', result, re.IGNORECASE)
else (False if re.search(r'\b(no|false)\b', result, re.IGNORECASE) else None)
)
elif type_annotation in [int, float]:
parsed_result = re.sub(r'[^0-9.]', '', result)
if parsed_result:
try:
parsed_result = type_annotation(parsed_result)
except Exception:
parsed_result = None
else:
parsed_result = None
elif type_annotation == str:
parsed_result = result.strip()
else:
raise ValueError(f"Unsupported type annotation: {type_annotation}")
output[field_name] = parsed_result
return class_annotation(**output)
##### End Library Code
def log_time(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"{func.__name__} executed in {end_time - start_time:.4f} seconds")
return result
return wrapper
default_documents = []
API_KEY = os.environ.get("brave_api_key")
@log_time
def brave_search(query, count=3):
url = "https://api.search.brave.com/res/v1/web/search"
headers = {"Accept": "application/json", "X-Subscription-Token": API_KEY}
params = {"q": query, "count": count}
response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
results = response.json().get("web", {}).get("results", [])
print(results)
return [(res["title"], res["description"], res["url"]) for res in results]
else:
print(f"Error: {response.status_code}, {response.text}")
return []
@traceable
@log_time
def query_teapot(prompt, context, user_input, teapot_ai):
response = teapot_ai.query(
context=prompt+"\n"+context,
query=user_input
)
return response
@log_time
def handle_chat(user_input, teapot_ai):
results = brave_search(user_input)
documents = [desc.replace('<strong>','').replace('</strong>','') for _, desc, _ in results]
st.sidebar.write("---")
st.sidebar.write("## RAG Documents")
for (title, description, url) in results:
# Display Results
st.sidebar.write(f"## {title}")
st.sidebar.write(f"{description.replace('<strong>','').replace('</strong>','')}")
st.sidebar.write(f"[Source]({url})")
st.sidebar.write("---")
context = "\n".join(documents)
prompt = "You are Teapot, an open-source AI assistant optimized for low-end devices, providing short, accurate responses without hallucinating while excelling at information extraction and text summarization."
response = query_teapot(prompt, context, user_input, teapot_ai)
return response
def suggestion_button(suggestion_text, teapot_ai):
if st.button(suggestion_text):
handle_chat(suggestion_text, teapot_ai)
@log_time
def hash_documents(documents):
return hashlib.sha256("\n".join(documents).encode("utf-8")).hexdigest()
def main():
st.set_page_config(page_title="TeapotAI Chat", page_icon=":robot_face:", layout="wide")
st.sidebar.header("Retrieval Augmented Generation")
user_documents = st.sidebar.text_area("Enter documents, each on a new line", value="\n".join(default_documents))
documents = [doc.strip() for doc in user_documents.split("\n") if doc.strip()]
new_documents_hash = hash_documents(documents)
if "documents_hash" not in st.session_state or st.session_state.documents_hash != new_documents_hash:
with st.spinner('Loading Model and Embeddings...'):
start_time = time.time()
teapot_ai = TeapotAI(documents=documents or default_documents, settings=TeapotAISettings(rag_num_results=3))
end_time = time.time()
print(f"Model loaded in {end_time - start_time:.4f} seconds")
st.session_state.documents_hash = new_documents_hash
st.session_state.teapot_ai = teapot_ai
else:
teapot_ai = st.session_state.teapot_ai
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "Hi, I am Teapot AI, how can I help you?"}]
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
user_input = st.chat_input("Ask me anything")
s1, s2, s3 = st.columns([1, 2, 3])
with s1:
suggestion_button("Tell me about the varieties of tea", teapot_ai)
with s2:
suggestion_button("Who was born first, Alan Turing or John von Neumann?", teapot_ai)
with s3:
suggestion_button("Extract Google's stock price", teapot_ai)
if user_input:
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.messages.append({"role": "user", "content": user_input})
with st.spinner('Generating Response...'):
response = handle_chat(user_input, teapot_ai)
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
st.markdown("### Suggested Questions")
if __name__ == "__main__":
main()