Spaces:
No application file
No application file
Delete app.py
Browse files
app.py
DELETED
@@ -1,123 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import onnxruntime as ort
|
4 |
-
import torch
|
5 |
-
import gc
|
6 |
-
import os
|
7 |
-
import time
|
8 |
-
|
9 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
-
from huggingface_hub import hf_hub_download, HfFolder
|
11 |
-
|
12 |
-
token = HfFolder.get_token() or os.getenv("HF_TOKEN")
|
13 |
-
|
14 |
-
HF_MODEL_ID = "mistralai/Mistral-Nemo-Instruct-2407"
|
15 |
-
HF_ONNX_REPO = "techAInewb/mistral-nemo-2407-fp32"
|
16 |
-
ONNX_MODEL_FILE = "model.onnx"
|
17 |
-
|
18 |
-
# Shared tokenizer
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, token=token)
|
20 |
-
|
21 |
-
def compare_outputs(prompt, show_tokens):
|
22 |
-
summary_log = []
|
23 |
-
pt_output_text = ""
|
24 |
-
ort_output_text = ""
|
25 |
-
pt_tokens = []
|
26 |
-
ort_tokens = []
|
27 |
-
|
28 |
-
try:
|
29 |
-
import psutil
|
30 |
-
ram_used = f"{psutil.virtual_memory().used / 1e9:.2f} GB"
|
31 |
-
except:
|
32 |
-
ram_used = "Unavailable"
|
33 |
-
|
34 |
-
# πΉ PyTorch Generate
|
35 |
-
pt_start = time.time()
|
36 |
-
try:
|
37 |
-
torch_inputs = tokenizer(prompt, return_tensors="pt")
|
38 |
-
pt_model = AutoModelForCausalLM.from_pretrained(HF_MODEL_ID, torch_dtype=torch.float32, token=token)
|
39 |
-
pt_model.eval()
|
40 |
-
with torch.no_grad():
|
41 |
-
pt_outputs = pt_model.generate(**torch_inputs, max_new_tokens=50)
|
42 |
-
pt_output_ids = pt_outputs[0].tolist()
|
43 |
-
pt_output_text = tokenizer.decode(pt_output_ids, skip_special_tokens=True)
|
44 |
-
pt_tokens = tokenizer.convert_ids_to_tokens(pt_output_ids)
|
45 |
-
pt_time = time.time() - pt_start
|
46 |
-
finally:
|
47 |
-
del pt_model
|
48 |
-
gc.collect()
|
49 |
-
if torch.cuda.is_available():
|
50 |
-
torch.cuda.empty_cache()
|
51 |
-
|
52 |
-
# πΉ ONNX Generate (Greedy)
|
53 |
-
ort_start = time.time()
|
54 |
-
ort_inputs = tokenizer(prompt, return_tensors="np")
|
55 |
-
onnx_path = hf_hub_download(repo_id=HF_ONNX_REPO, filename=ONNX_MODEL_FILE)
|
56 |
-
ort_session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"])
|
57 |
-
ort_output_ids = []
|
58 |
-
generated = ort_inputs["input_ids"]
|
59 |
-
attention_mask = ort_inputs["attention_mask"]
|
60 |
-
for _ in range(50):
|
61 |
-
ort_outputs = ort_session.run(None, {
|
62 |
-
"input_ids": generated,
|
63 |
-
"attention_mask": attention_mask
|
64 |
-
})
|
65 |
-
next_token_logits = ort_outputs[0][:, -1, :]
|
66 |
-
next_token = np.argmax(next_token_logits, axis=-1).reshape(-1, 1)
|
67 |
-
ort_output_ids.append(next_token[0][0])
|
68 |
-
generated = np.concatenate((generated, next_token), axis=1)
|
69 |
-
attention_mask = np.concatenate((attention_mask, np.ones((1, 1), dtype=np.int64)), axis=1)
|
70 |
-
if next_token[0][0] == tokenizer.eos_token_id:
|
71 |
-
break
|
72 |
-
ort_time = time.time() - ort_start
|
73 |
-
ort_tokens = tokenizer.convert_ids_to_tokens(ort_inputs["input_ids"][0].tolist() + ort_output_ids)
|
74 |
-
ort_output_text = tokenizer.decode(ort_inputs["input_ids"][0].tolist() + ort_output_ids, skip_special_tokens=True)
|
75 |
-
|
76 |
-
# π Summary
|
77 |
-
summary_log.append("| Model | Tokens | Time (s) | Time/Token |")
|
78 |
-
summary_log.append("|---------|--------|----------|------------|")
|
79 |
-
summary_log.append(f"| PyTorch | {len(pt_tokens)} | {pt_time:.2f} | {pt_time / max(1, len(pt_tokens)):.4f} |")
|
80 |
-
summary_log.append(f"| ONNX | {len(ort_tokens)} | {ort_time:.2f} | {ort_time / max(1, len(ort_tokens)):.4f} |")
|
81 |
-
summary_log.append(f"\nπ¦ RAM Used: {ram_used}")
|
82 |
-
summary_log.append(f"π Tokenizer: {tokenizer.name_or_path} | Vocab size: {tokenizer.vocab_size}")
|
83 |
-
summary_log.append("π οΈ Note: This ONNX export is FP32. INT8 + Vitis AI variants coming soon.")
|
84 |
-
|
85 |
-
outputs = [pt_output_text, ort_output_text, "\n".join(summary_log)]
|
86 |
-
|
87 |
-
if show_tokens:
|
88 |
-
outputs += [
|
89 |
-
", ".join(pt_tokens),
|
90 |
-
", ".join(ort_tokens)
|
91 |
-
]
|
92 |
-
else:
|
93 |
-
outputs += ["", ""]
|
94 |
-
|
95 |
-
return outputs
|
96 |
-
|
97 |
-
example_prompts = [
|
98 |
-
"Who was the first president of the United States?",
|
99 |
-
"If you have 3 apples and eat 1, how many are left?",
|
100 |
-
"Write a short poem about memory and time.",
|
101 |
-
"Explain the laws of motion in simple terms.",
|
102 |
-
"What happens when you mix baking soda and vinegar?"
|
103 |
-
]
|
104 |
-
|
105 |
-
iface = gr.Interface(
|
106 |
-
fn=compare_outputs,
|
107 |
-
inputs=[
|
108 |
-
gr.Textbox(lines=2, placeholder="Enter a prompt..."),
|
109 |
-
gr.Checkbox(label="Show Token IDs")
|
110 |
-
],
|
111 |
-
outputs=[
|
112 |
-
gr.Textbox(label="PyTorch Output"),
|
113 |
-
gr.Textbox(label="ONNX Output"),
|
114 |
-
gr.Textbox(label="Evaluation Summary"),
|
115 |
-
gr.Textbox(label="PyTorch Tokens"),
|
116 |
-
gr.Textbox(label="ONNX Tokens")
|
117 |
-
],
|
118 |
-
title="ONNX vs PyTorch (Full Output + Token Trace)",
|
119 |
-
description="Run both models on your prompt and compare output text, timing, and token traces. Sequential model loading avoids OOM.",
|
120 |
-
examples=[[p, False] for p in example_prompts]
|
121 |
-
)
|
122 |
-
|
123 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|