techysanoj's picture
Update app.py
54bb4e5
raw
history blame
2.14 kB
import gradio as gr
import torch
from PIL import Image
from transformers import DetrImageProcessor, DetrForObjectDetection
import cv2
import numpy as np
# Load the pretrained DETR model
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
# Define the object detection function
def detect_objects(frame):
# Convert the frame to PIL image
image = Image.fromarray(frame)
# Preprocess the image
inputs = processor(images=image, return_tensors="pt")
# Perform object detection
outputs = model(**inputs)
# Convert outputs to COCO API format
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
# Draw bounding boxes on the frame
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
frame = cv2.rectangle(frame, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 2)
frame = cv2.putText(frame, f'{model.config.id2label[label.item()]}: {round(score.item(), 3)}',
(int(box[0]), int(box[1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2, cv2.LINE_AA)
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Function to capture video frames and process them
def capture_frames():
cap = cv2.VideoCapture(cv2.CAP_ANY)
# Use 0 for default camera, you can change it if needed
while True:
ret, frame = cap.read()
if not ret:
break
# Process the frame
processed_frame = detect_objects(frame)
# Display the processed frame
cv2.imshow("Object Detection", processed_frame)
# Check for exit key (press 'q' to exit)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the camera and close all windows
cap.release()
cv2.destroyAllWindows()
# Run the video capturing and processing function
capture_frames()