File size: 2,136 Bytes
d10f466
 
 
b496423
6c68290
 
d10f466
bebfcb3
b496423
 
bf51623
6c68290
bebfcb3
 
 
bf51623
b496423
 
bf51623
bebfcb3
b496423
bf51623
b496423
 
 
bebfcb3
 
b496423
 
6c68290
 
 
bebfcb3
b0056be
bf51623
b0056be
 
54bb4e5
 
d10f466
b0056be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
import torch
from PIL import Image
from transformers import DetrImageProcessor, DetrForObjectDetection
import cv2
import numpy as np

# Load the pretrained DETR model
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")

# Define the object detection function
def detect_objects(frame):
    # Convert the frame to PIL image
    image = Image.fromarray(frame)

    # Preprocess the image
    inputs = processor(images=image, return_tensors="pt")

    # Perform object detection
    outputs = model(**inputs)

    # Convert outputs to COCO API format
    target_sizes = torch.tensor([image.size[::-1]])
    results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]

    # Draw bounding boxes on the frame
    for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
        box = [round(i, 2) for i in box.tolist()]
        frame = cv2.rectangle(frame, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 2)
        frame = cv2.putText(frame, f'{model.config.id2label[label.item()]}: {round(score.item(), 3)}',
                            (int(box[0]), int(box[1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2, cv2.LINE_AA)

    return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

# Function to capture video frames and process them
def capture_frames():
    cap = cv2.VideoCapture(cv2.CAP_ANY)
  # Use 0 for default camera, you can change it if needed

    while True:
        ret, frame = cap.read()
        if not ret:
            break

        # Process the frame
        processed_frame = detect_objects(frame)

        # Display the processed frame
        cv2.imshow("Object Detection", processed_frame)

        # Check for exit key (press 'q' to exit)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    # Release the camera and close all windows
    cap.release()
    cv2.destroyAllWindows()

# Run the video capturing and processing function
capture_frames()