Spaces:
Runtime error
Runtime error
Commit
·
bebfcb3
1
Parent(s):
4cbee43
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
|
|
3 |
from PIL import Image
|
4 |
-
from transformers import DetrImageProcessor, DetrForObjectDetection
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
|
8 |
-
# Load the
|
9 |
-
|
10 |
-
model =
|
11 |
-
model.eval()
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
target_sizes = torch.tensor([image_pil.size[::-1]])
|
25 |
-
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
cv2.rectangle(image_np, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
31 |
-
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}"
|
32 |
-
cv2.putText(image_np, label_text, (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Define the Gradio interface
|
37 |
iface = gr.Interface(
|
38 |
-
fn=
|
39 |
-
inputs=gr.
|
40 |
-
outputs="
|
41 |
live=True,
|
|
|
42 |
)
|
43 |
|
44 |
-
# Launch the Gradio
|
45 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from torchvision.models.detection import detr
|
5 |
from PIL import Image
|
|
|
6 |
import cv2
|
7 |
import numpy as np
|
8 |
|
9 |
+
# Load the pretrained DETR model
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model = detr.DETR(resnet50=True)
|
12 |
+
model = model.to(device).eval()
|
13 |
|
14 |
+
# Define the transformation for the input image
|
15 |
+
transform = transforms.Compose([
|
16 |
+
transforms.ToTensor(),
|
17 |
+
transforms.Resize((800, 800)),
|
18 |
+
])
|
19 |
|
20 |
+
# Define the object detection function
|
21 |
+
def detect_objects(frame):
|
22 |
+
# Convert the frame to PIL image
|
23 |
+
image = Image.fromarray(frame)
|
24 |
|
25 |
+
# Apply the transformation
|
26 |
+
image = transform(image).unsqueeze(0).to(device)
|
|
|
|
|
27 |
|
28 |
+
# Perform object detection
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(image)
|
|
|
|
|
|
|
31 |
|
32 |
+
# Get the bounding boxes and labels
|
33 |
+
boxes = outputs['pred_boxes'][0].cpu().numpy()
|
34 |
+
labels = outputs['pred_classes'][0].cpu().numpy()
|
35 |
+
|
36 |
+
# Draw bounding boxes on the frame
|
37 |
+
for box, label in zip(boxes, labels):
|
38 |
+
box = [int(coord) for coord in box]
|
39 |
+
frame = cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
40 |
+
frame = cv2.putText(frame, f'Class: {label}', (box[0], box[1] - 10),
|
41 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2, cv2.LINE_AA)
|
42 |
+
|
43 |
+
return frame
|
44 |
|
45 |
# Define the Gradio interface
|
46 |
iface = gr.Interface(
|
47 |
+
fn=detect_objects,
|
48 |
+
inputs=gr.Video(),
|
49 |
+
outputs="video",
|
50 |
live=True,
|
51 |
+
capture_session=True,
|
52 |
)
|
53 |
|
54 |
+
# Launch the Gradio app
|
55 |
iface.launch()
|