Spaces:
Runtime error
Runtime error
Commit
·
4cbee43
1
Parent(s):
69c84d2
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
-
import cv2
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
|
|
6 |
import numpy as np
|
7 |
|
8 |
# Load the pre-trained DETR model
|
@@ -33,55 +33,11 @@ def image_object_detection(image_pil):
|
|
33 |
|
34 |
return image_np
|
35 |
|
36 |
-
# Function for live object detection from the camera
|
37 |
-
def live_object_detection():
|
38 |
-
# Open a connection to the camera (replace with your own camera setup)
|
39 |
-
cap = cv2.VideoCapture(0)
|
40 |
-
|
41 |
-
while True:
|
42 |
-
# Capture frame-by-frame
|
43 |
-
ret, frame = cap.read()
|
44 |
-
|
45 |
-
# Convert the frame to PIL Image
|
46 |
-
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
47 |
-
|
48 |
-
# Process the frame with the DETR model
|
49 |
-
inputs = processor(images=frame_pil, return_tensors="pt")
|
50 |
-
outputs = model(**inputs)
|
51 |
-
|
52 |
-
# convert outputs (bounding boxes and class logits) to COCO API
|
53 |
-
# let's only keep detections with score > 0.9
|
54 |
-
target_sizes = torch.tensor([frame_pil.size[::-1]])
|
55 |
-
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
56 |
-
|
57 |
-
# Draw bounding boxes on the frame
|
58 |
-
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
59 |
-
box = [int(round(i)) for i in box.tolist()]
|
60 |
-
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
61 |
-
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}"
|
62 |
-
cv2.putText(frame, label_text, (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
63 |
-
|
64 |
-
# Display the resulting frame
|
65 |
-
cv2.imshow('Object Detection', frame)
|
66 |
-
|
67 |
-
# Break the loop when 'q' key is pressed
|
68 |
-
if cv2.waitKey(1) & 0xFF == ord('q'):
|
69 |
-
break
|
70 |
-
|
71 |
-
# Release the camera and close all windows
|
72 |
-
cap.release()
|
73 |
-
cv2.destroyAllWindows()
|
74 |
-
|
75 |
# Define the Gradio interface
|
76 |
iface = gr.Interface(
|
77 |
-
fn=
|
78 |
-
inputs=
|
79 |
-
|
80 |
-
],
|
81 |
-
outputs=[
|
82 |
-
"image",
|
83 |
-
"image",
|
84 |
-
],
|
85 |
live=True,
|
86 |
)
|
87 |
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
5 |
+
import cv2
|
6 |
import numpy as np
|
7 |
|
8 |
# Load the pre-trained DETR model
|
|
|
33 |
|
34 |
return image_np
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# Define the Gradio interface
|
37 |
iface = gr.Interface(
|
38 |
+
fn=image_object_detection,
|
39 |
+
inputs=gr.Image(type="pil", label="Upload an image for object detection"),
|
40 |
+
outputs="image",
|
|
|
|
|
|
|
|
|
|
|
41 |
live=True,
|
42 |
)
|
43 |
|