Spaces:
Runtime error
Runtime error
Commit
·
b496423
1
Parent(s):
bebfcb3
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import torchvision.transforms as transforms
|
4 |
-
from torchvision.models.detection import detr
|
5 |
from PIL import Image
|
6 |
-
import
|
7 |
-
import
|
8 |
|
9 |
# Load the pretrained DETR model
|
10 |
-
|
11 |
-
model =
|
12 |
-
model = model.to(device).eval()
|
13 |
-
|
14 |
-
# Define the transformation for the input image
|
15 |
-
transform = transforms.Compose([
|
16 |
-
transforms.ToTensor(),
|
17 |
-
transforms.Resize((800, 800)),
|
18 |
-
])
|
19 |
|
20 |
# Define the object detection function
|
21 |
def detect_objects(frame):
|
22 |
# Convert the frame to PIL image
|
23 |
image = Image.fromarray(frame)
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
|
28 |
# Perform object detection
|
29 |
-
|
30 |
-
outputs = model(image)
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
|
36 |
# Draw bounding boxes on the frame
|
37 |
-
for
|
38 |
-
box = [
|
39 |
-
frame =
|
40 |
-
frame = cv2.putText(frame, f'Class: {label}', (box[0], box[1] - 10),
|
41 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2, cv2.LINE_AA)
|
42 |
|
43 |
return frame
|
44 |
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
|
|
3 |
from PIL import Image
|
4 |
+
from torchvision.transforms import functional as F
|
5 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
6 |
|
7 |
# Load the pretrained DETR model
|
8 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
9 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Define the object detection function
|
12 |
def detect_objects(frame):
|
13 |
# Convert the frame to PIL image
|
14 |
image = Image.fromarray(frame)
|
15 |
|
16 |
+
# Preprocess the image
|
17 |
+
inputs = processor(images=image, return_tensors="pt")
|
18 |
|
19 |
# Perform object detection
|
20 |
+
outputs = model(**inputs)
|
|
|
21 |
|
22 |
+
# Convert outputs to COCO API format
|
23 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
24 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
25 |
|
26 |
# Draw bounding boxes on the frame
|
27 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
28 |
+
box = [round(i, 2) for i in box.tolist()]
|
29 |
+
frame = gr.draw_box(frame, box, label=model.config.id2label[label.item()], color=(0, 255, 0))
|
|
|
|
|
30 |
|
31 |
return frame
|
32 |
|