techysanoj's picture
Update app.py
ac00638
raw
history blame
1.66 kB
import gradio as gr
import cv2
import torch
from PIL import Image
from transformers import DetrImageProcessor, DetrForObjectDetection
# Load the pre-trained DETR model
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
model.eval()
# Function for live object detection from the camera
def live_object_detection(image_pil):
# Convert the frame to PIL Image
frame_pil = Image.fromarray(cv2.cvtColor(image_pil, cv2.COLOR_BGR2RGB))
# Process the frame with the DETR model
inputs = processor(images=frame_pil, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.9
target_sizes = torch.tensor([frame_pil.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
# Draw bounding boxes on the frame
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [int(round(i)) for i in box.tolist()]
cv2.rectangle(image_pil, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
cv2.putText(image_pil, f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}",
(box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
return image_pil
# Define the Gradio interface
iface = gr.Interface(
fn=live_object_detection,
inputs="image",
outputs="image",
live=True,
)
# Launch the Gradio interface
iface.launch()