tedgwara's picture
Create app.py
6832fea
raw
history blame
4.33 kB
import gradio as gr
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from reader import get_article
### ------------------------------ ###
### data transformation ###
### ------------------------------ ###
# options constants
options = [
['Very Poorly Aligned', 'Poorly Aligned', 'Neutrally Aligned', 'Well Aligned', 'Very Well Aligned'],
['Very Limited Experience', 'Limited Experience', 'Neutral Experience', 'Extensive Experience', 'Very Extensive Experience'],
['Extremely Unattractive', 'Moderately Unattractive', 'Neutrally Attractive', 'Moderately Attractive', 'Extremely Attractive'],
['Very Unfavorable', 'Moderately Unfavorable', 'Neutrally Favorable', 'Moderately Favorable', 'Very Favorable'],
['Very Poor Fit', 'Poor Fit', 'Neutral Fit', 'Moderately Good Fit', 'Excellent Fit']
]
# load dataset
uncleaned_data = pd.read_csv('data.csv')
data = pd.DataFrame()
# keep track of which columns are categorical and what
# those columns' value mappings are
# structure: {colname1: {...}, colname2: {...} }
cat_value_dicts = {}
col = 0
final_colname = uncleaned_data.columns[4]
# for each column...
for (colname, colval) in uncleaned_data.iteritems():
# structure: {0: "lilac", 1: "blue", ...}
new_dict = {}
transformed_col_vals = [] # new numeric datapoints
# if not, for each item in that column...
for (row, item) in enumerate(colval.values):
# if item is not in this col's dict...
if item not in new_dict:
new_dict[item] = options[col].index(item)
# then add numerical value to transformed dataframe
transformed_col_vals.append(new_dict[item])
# reverse dictionary only for final col (0, 1) => (vals)
if colname == final_colname:
new_dict = {value : key for (key, value) in new_dict.items()}
cat_value_dicts[colname] = new_dict
data[colname] = transformed_col_vals
col += 1
### -------------------------------- ###
### model training ###
### -------------------------------- ###
# select features and predicton; automatically selects last column as prediction
num_features = 4
x = data.iloc[: , :num_features]
y = data.iloc[: , num_features:]
# split data into training and testing sets
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# instantiate the model (using default parameters)
model = LogisticRegression(max_iter=100)
model.fit(x_train, y_train.values.ravel())
y_pred = model.predict(x_test)
### -------------------------------- ###
### article generation ###
### -------------------------------- ###
# borrow file reading function from reader.py
def get_feats():
feats = [abs(x) for x in model.coef_[0]]
feats, cols = zip(*sorted(zip(feats, data.columns)))
output = []
for idx, col in enumerate(reversed(cols)):
output.append(col)
# max_val = max(feats)
# idx = feats.index(max_val)
# return data.columns[idx]
return output
acc = str(round(metrics.accuracy_score(y_test, y_pred) * 100, 2)) + '%'
feats = get_feats()
info = get_article(acc, feats)
### ------------------------------- ###
### interface creation ###
### ------------------------------- ###
def predictor(*args):
features = []
# transform categorical input
for num, col in enumerate(args):
features.append(cat_value_dicts[data.columns[num]][col])
# predict single datapoint
new_input = [features]
result = model.predict(new_input)
return cat_value_dicts[final_colname][result[0]]
# add data labels to replace those lost via star-args
inputls = []
labels = [
"How Well Do They Align with RS21's 9 Core Values?",
"How Experienced Are They in RS21's Markets?",
"How Attractive is Their Valuation of RS21?",
"How Favorable is Their Proposed Deal Structure for RS21?"
]
for num, colname in enumerate(labels):
# access categories dict if data is categorical
inputls.append(gr.inputs.Radio(choices=options[num], type="value", label=labels[num]))
# generate gradio interface
interface = gr.Interface(predictor, inputs=inputls, outputs="text", article=info['article'], css=info['css'], theme="grass", title=info['title'], allow_flagging='never', description=info['description'])
# show the interface
interface.launch()