ZeqiangLai's picture
update
6f34049
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import logging
import os
from functools import wraps
import torch
def get_logger(name):
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
return logger
logger = get_logger('hy3dgen.shapgen')
class synchronize_timer:
""" Synchronized timer to count the inference time of `nn.Module.forward`.
Supports both context manager and decorator usage.
Example as context manager:
```python
with synchronize_timer('name') as t:
run()
```
Example as decorator:
```python
@synchronize_timer('Export to trimesh')
def export_to_trimesh(mesh_output):
pass
```
"""
def __init__(self, name=None):
self.name = name
def __enter__(self):
"""Context manager entry: start timing."""
if os.environ.get('HY3DGEN_DEBUG', '0') == '1':
self.start = torch.cuda.Event(enable_timing=True)
self.end = torch.cuda.Event(enable_timing=True)
self.start.record()
return lambda: self.time
def __exit__(self, exc_type, exc_value, exc_tb):
"""Context manager exit: stop timing and log results."""
if os.environ.get('HY3DGEN_DEBUG', '0') == '1':
self.end.record()
torch.cuda.synchronize()
self.time = self.start.elapsed_time(self.end)
if self.name is not None:
logger.info(f'{self.name} takes {self.time} ms')
def __call__(self, func):
"""Decorator: wrap the function to time its execution."""
@wraps(func)
def wrapper(*args, **kwargs):
with self:
result = func(*args, **kwargs)
return result
return wrapper
def smart_load_model(
model_path,
subfolder,
use_safetensors,
variant,
):
original_model_path = model_path
# try local path
base_dir = os.environ.get('HY3DGEN_MODELS', '~/.cache/hy3dgen')
model_path = os.path.expanduser(os.path.join(base_dir, model_path, subfolder))
logger.info(f'Try to load model from local path: {model_path}')
if not os.path.exists(model_path):
logger.info('Model path not exists, try to download from huggingface')
try:
from huggingface_hub import snapshot_download
# 只下载指定子目录
path = snapshot_download(
repo_id=original_model_path,
allow_patterns=[f"{subfolder}/*"], # 关键修改:模式匹配子文件夹
)
model_path = os.path.join(path, subfolder) # 保持路径拼接逻辑不变
except ImportError:
logger.warning(
"You need to install HuggingFace Hub to load models from the hub."
)
raise RuntimeError(f"Model path {model_path} not found")
except Exception as e:
raise e
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model path {original_model_path} not found")
extension = 'ckpt' if not use_safetensors else 'safetensors'
variant = '' if variant is None else f'.{variant}'
ckpt_name = f'model{variant}.{extension}'
config_path = os.path.join(model_path, 'config.yaml')
ckpt_path = os.path.join(model_path, ckpt_name)
return config_path, ckpt_path