Spaces:
Running
on
L40S
Running
on
L40S
Our MERT & BEST-RQ
Our implementation on MERT model. Files modified:
- mert_fairseq/models/mert/mert_model.py
- mert_fairseq/data/mert_dataset.py
- run_training_mulNodes_wotorchdist_womodelparsize.sh
Prepare
The MERT training is implemented with fairseq. You need to clone the fairseq repo inside our repo at ./src/fairseq and MERT implementation codes as a fairseq example projcet.
You can do that by following the steps:
mkdir -c ./src/fairseq
cd ./src
git clone https://github.com/pytorch/fairseq
Docker
mirrors.tencent.com/cloudezhou/mert:v3
Start
1-node training
bash run_training_sglNodes.sh 0 dummy MERT_RVQ-VAE_CQT_330M_multinodes_debug1node
1-node training (BEST-RQ)
bash run_training_sglNodes.sh 0 dummy MERT_RVQ-VAE_CQT_95M_bestrq
4-node training
bash run_training_mulNodes_wotorchdist_womodelparsize.sh 0 dummy MERT_RVQ-VAE_CQT_330M_multinodes
bash run_training_mulNodes_wotorchdist_womodelparsize.sh 1 dummy MERT_RVQ-VAE_CQT_330M_multinodes
bash run_training_mulNodes_wotorchdist_womodelparsize.sh 2 dummy MERT_RVQ-VAE_CQT_330M_multinodes
bash run_training_mulNodes_wotorchdist_womodelparsize.sh 3 dummy MERT_RVQ-VAE_CQT_330M_multinodes
4-node training (BEST-RQ)
bash run_training_mulNodes_wotorchdist_womodelparsize.sh $INDEX dummy MERT_RVQ-VAE_CQT_95M_bestrq_multinodes BEST_RQ $CHIEF_IP
4-node training (MusicFM)
bash run_training_mulNodes_wotorchdist_womodelparsize.sh $INDEX dummy MusicFM_95M_multinodes MUSICFM $CHIEF_IP
4-node training (EAT)
bash run_training_eat.sh $INDEX dummy EAT_pretraining_music_multinodes EAT $CHIEF_IP
You could set the parameters in mert_fairseq/config/pretrain/MERT_RVQ-VAE_CQT_330M.yaml
Our latest checkpoints is loaded at data/fairseq_savedir/ckpt_MERT_RVQ-VAE_CQT/MERT_RVQ-VAE_CQT_330M/checkpoint_last.pt