SongGeneration / codeclm /tokenizer /Flow1dVAE /tools /infer_bsrnnvae441k_vocal.py
hainazhu
Add application file
258fd02
import json
import torch
from tqdm import tqdm
import torchaudio
import librosa
import os
import math
import numpy as np
from tools.get_bsrnnvae import get_bsrnnvae
import tools.torch_tools as torch_tools
class Tango:
def __init__(self, \
device="cuda:0"):
self.sample_rate = 44100
self.device = device
self.vae = get_bsrnnvae()
self.vae = self.vae.eval().to(device)
def sound2sound_generate_longterm(self, fname, batch_size=1, duration=20.48, steps=200, disable_progress=False):
""" Genrate audio without condition. """
num_frames = math.ceil(duration * 100. / 8)
with torch.no_grad():
orig_samples, fs = torchaudio.load(fname)
if(fs!=44100):
orig_samples = torchaudio.functional.resample(orig_samples, fs, 44100)
fs = 44100
if(orig_samples.shape[-1]<int(duration*44100*2)):
orig_samples = torch.cat([orig_samples, torch.zeros(orig_samples.shape[0], int(duration*44100*2+480)-orig_samples.shape[-1], \
dtype=orig_samples.dtype, device=orig_samples.device)], -1)
# orig_samples = torch.cat([torch.zeros(orig_samples.shape[0], int(duration * fs)//2, dtype=orig_samples.dtype, device=orig_samples.device), orig_samples, torch.zeros(orig_samples.shape[0], int(duration * fs)//2, dtype=orig_samples.dtype, device=orig_samples.device)], -1).to(self.device)
orig_samples = torch.cat([orig_samples, torch.zeros(orig_samples.shape[0], int(duration * fs)//2, dtype=orig_samples.dtype, device=orig_samples.device)], -1).to(self.device)
if(fs!=44100):orig_samples = torchaudio.functional.resample(orig_samples, fs, 44100)
# resampled_audios = orig_samples[[0],int(4.64*44100):int(35.36*48000)+480].clamp(-1,1)
resampled_audios = orig_samples[[0],0:int(duration*2*44100)+480].clamp(-1,1)
orig_samples = orig_samples[[0],0:int(duration*2*44100)]
audio = self.vae(orig_samples[:,None,:])[:,0,:]
if(orig_samples.shape[-1]<audio.shape[-1]):
orig_samples = torch.cat([orig_samples, torch.zeros(orig_samples.shape[0], audio.shape[-1]-orig_samples.shape[-1], dtype=orig_samples.dtype, device=orig_samples.device)],-1)
else:
orig_samples = orig_samples[:,0:audio.shape[-1]]
output = torch.cat([orig_samples.detach().cpu(),audio.detach().cpu()],0)
return output