mbosse99's picture
Changed embedding model name
11f7c51
import io
import os
import openai
import re
import sqlite3
import base64
import calendar
import json
import time
import uuid
from reportlab.platypus import SimpleDocTemplate, Paragraph
from reportlab.lib.styles import getSampleStyleSheet
import streamlit as st
from streamlit_js_eval import streamlit_js_eval
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores.azuresearch import AzureSearch
from azure.storage.blob import BlobServiceClient
from azure.cosmos import CosmosClient, exceptions
from PyPDF2 import PdfReader
import openai
import sendgrid
from sendgrid.helpers.mail import Mail, Attachment, FileContent, FileName, FileType, Disposition
from twilio.rest import Client
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
openai.api_key = os.getenv("OPENAI_API_KEY")
openai.api_base = "https://tensora-oai-sweden.openai.azure.com/"
openai.api_type = "azure"
openai.api_version = "2023-12-01-preview"
connection_string = os.getenv("CONNECTION")
blob_service_client = BlobServiceClient.from_connection_string(connection_string)
def upload_blob(pdf_name, json_data, pdf_data_jobdescription,pdf_data_cvs, pre_generated_bool, custom_questions):
try:
container_name = "jobdescriptions"
# json_blob_name = f"{pdf_name}_jsondata.json"
pdf_blob_name_jobdescription = f"{pdf_name}.pdf"
container_client = blob_service_client.get_container_client(container_name)
# json_blob_client = container_client.get_blob_client(json_blob_name)
# json_blob_client.upload_blob(json_data.encode('utf-8'), overwrite=True)
pdf_blob_client = container_client.get_blob_client(pdf_blob_name_jobdescription)
pdf_blob_client.upload_blob(pdf_data_jobdescription, overwrite=True)
upload_job_db_item(pdf_name,len(pdf_data_cvs),json.loads(json_data),pre_generated_bool, custom_questions)
if pre_generated_bool:
for i,question in enumerate(custom_questions):
question_nr_for_id = i+1
question_id = pdf_name + "-question-nr-" + str(question_nr_for_id)+str(calendar.timegm(time.gmtime()))
upload_question_db_item(question_id, pdf_name, question,st.session_state["job_string"])
links = []
names = []
for i,cv in enumerate(pdf_data_cvs):
cv_nr_for_id = i+1
cv_session_state_string = "cv-"+str(cv_nr_for_id)
session_state_name = st.session_state["final_candidates"][i][0].metadata["name"]
names.append(session_state_name)
cv_id = pdf_name + "-cv-nr-" + str(cv_nr_for_id)+str(calendar.timegm(time.gmtime()))
upload_db_item(session_state_name, json.loads(json_data), pdf_name, cv_id)
pdf_blob_name_cv = f"{cv_id}.pdf"
pdf_blob_client = container_client.get_blob_client(pdf_blob_name_cv)
pdf_blob_client.upload_blob(pdf_data_cvs[i], overwrite=True)
links.append("https://tensora.ai/workgenius/cv-evaluation2/?job="+cv_id)
return links
except Exception as e:
print(f"Fehler beim Hochladen der Daten: {str(e)}")
return []
def upload_job_db_item(id, number_of_applicants, data, pre_generated_bool, custom_questions):
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
key = os.getenv("CONNECTION_DB")
client = CosmosClient(endpoint, key)
database = client.get_database_client("ToDoList")
container = database.get_container_client("JobData")
job_item = {
"id": id,
'partitionKey' : 'wg-job-data-v1',
"title": data["title"],
"number_of_applicants": number_of_applicants,
"every_interview_conducted": False,
"evaluation_email": data["email"],
"question_one": data["question_one"],
"question_two": data["question_two"],
"question_three": data["question_three"],
"pre_generated": pre_generated_bool,
"custom_questions": custom_questions
}
try:
# Fügen Sie das Element in den Container ein
container.create_item(body=job_item)
print("Eintrag erfolgreich in die Cosmos DB eingefügt. Container: Job Data")
except exceptions.CosmosHttpResponseError as e:
print(f"Fehler beim Schreiben in die Cosmos DB: {str(e)}")
except Exception as e:
print(f"Allgemeiner Fehler: {str(e)}")
def upload_db_item(name, data, job_description_id, cv_id):
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
key = os.getenv("CONNECTION_DB")
client = CosmosClient(endpoint, key)
database = client.get_database_client("ToDoList")
container = database.get_container_client("Items")
candidate_item = {
"id": cv_id,
'partitionKey' : 'wg-candidate-data-v1',
"name": name,
"title": data["title"],
"interview_conducted": False,
"ai_summary": "",
"evaluation_email": data["email"],
"question_one": data["question_one"],
"question_two": data["question_two"],
"question_three": data["question_three"],
"job_description_id": job_description_id,
}
try:
# Fügen Sie das Element in den Container ein
container.create_item(body=candidate_item)
print("Eintrag erfolgreich in die Cosmos DB eingefügt. Container: Items(candidate Data)")
except exceptions.CosmosHttpResponseError as e:
print(f"Fehler beim Schreiben in die Cosmos DB: {str(e)}")
except Exception as e:
print(f"Allgemeiner Fehler: {str(e)}")
def upload_question_db_item(id, job_id, question, job_content):
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
key = os.getenv("CONNECTION_DB")
client = CosmosClient(endpoint, key)
database = client.get_database_client("ToDoList")
container = database.get_container_client("Questions")
question_item = {
"id": id,
"partitionKey" : "wg-question-data-v1",
"job_id": job_id,
"question_content": question,
"job_description": job_content,
}
try:
# Fügen Sie das Element in den Container ein
container.create_item(body=question_item)
print("Eintrag erfolgreich in die Cosmos DB eingefügt. Container: Questions(Question Data)")
except exceptions.CosmosHttpResponseError as e:
print(f"Fehler beim Schreiben in die Cosmos DB: {str(e)}")
except Exception as e:
print(f"Allgemeiner Fehler: {str(e)}")
st.markdown(
"""
<style>
[data-testid=column]{
text-align: center;
display: flex;
align-items: center;
justify-content: center;
}
h3{
text-align: left;
}
</style>
""",
unsafe_allow_html=True,
)
with open("sys_prompt_frontend.txt") as f:
sys_prompt = f.read()
with open("sys_prompt_job_optimization.txt") as j:
sys_prompt_optimization = j.read()
def adjust_numbering(lst):
return [f"{i + 1}. {item.split('. ', 1)[1]}" for i, item in enumerate(lst)]
def generate_candidate_mail(candidate, chat_link)-> str:
candidate_first_name = candidate[0].metadata["name"].split(" ")[0]
prompt = f"You are a professional recruiter who has selected a suitable candidate on the basis of a job description. Your task is to write two to three sentences about the applicant and explain why we think they are suitable for the job. The text will then be used in an e-mail to the applicant, so please address it to them. Please start the e-mail with 'Dear {candidate_first_name}'. I'll write the end of the mail myself."
try:
res = openai.ChatCompletion.create(
engine="gpt-4",
temperature=0.2,
messages=[
{
"role": "system",
"content": prompt,
},
{"role": "system", "content": "Job description: "+st.session_state["job_string"]+"; Resume: "+candidate[0].page_content}
],
)
# print(res.choices[0]["message"]["content"])
except Exception as e:
# Iterativ die Anfrage wiederholen und 200 Chars von hinten vom Resume weglassen
max_retries = 5
retries = 0
while retries < max_retries:
try:
# Reduziere die Länge des Resume um 200 Chars von hinten
candidate[0].page_content = candidate[0].page_content[:-200]
# Neue Anfrage senden
res = openai.ChatCompletion.create(
engine="gpt-4",
temperature=0.2,
messages=[
{
"role": "system",
"content": prompt,
},
{"role": "system", "content": "Job description: " + st.session_state["job_string"] + "; Resume: " + candidate[0].page_content}
],
)
# print(res.choices[0]["message"]["content"])
# Wenn die Anfrage erfolgreich ist, den Schleifen-Iterator beenden
break
except Exception as e:
# Bei erneuter Ausnahme die Schleife fortsetzen
retries += 1
if retries == max_retries:
# Falls die maximale Anzahl von Wiederholungen erreicht ist, handle die Ausnahme entsprechend
print("Max retries reached. Unable to get a valid response.")
return "The CV was too long to generate a Mail"
# Hier kannst du zusätzlichen Code für den Fall implementieren, dass die maximale Anzahl von Wiederholungen erreicht wurde.
# Optional: Füge eine Wartezeit zwischen den Anfragen hinzu, um API-Beschränkungen zu respektieren
time.sleep(1)
output_string = f"""{res.choices[0]["message"]["content"]}
We have added the job description to the mail attachment.
If you are interested in the position, please click on the following link, answer a few questions from our chatbot for about 10-15 minutes and we will get back to you.
Link to the interview chatbot: {chat_link}
Sincerely,
WorkGenius
"""
print("Mail generated")
return output_string
def generate_job_bullets(job)->str:
prompt = "You are a professional recruiter whose task is to summarize the provided job description in the most important 5 key points. The key points should have a maximum of 8 words. The only thing you should return are the bullet points."
try:
res = openai.ChatCompletion.create(
engine="gpt-4",
temperature=0.2,
messages=[
{
"role": "system",
"content": prompt,
},
{"role": "system", "content": "Job description: "+job}
],
)
# print(res.choices[0]["message"]["content"])
output_string = f"""{res.choices[0]["message"]["content"]}"""
# print(output_string)
return output_string
except Exception as e:
print(f"Fehler beim generieren der Bullets: {str(e)}")
def check_keywords_in_content(database_path, table_name, input_id, keywords):
# Verbindung zur Datenbank herstellen
conn = sqlite3.connect(database_path)
cursor = conn.cursor()
# SQL-Abfrage, um die Zeile mit der angegebenen ID abzurufen
cursor.execute(f'SELECT * FROM {table_name} WHERE id = ?', (input_id,))
# Ergebnis abrufen
row = cursor.fetchone()
# Wenn die Zeile nicht gefunden wurde, False zurückgeben
if not row:
conn.close()
print("ID not found")
return False
# Überprüfen, ob die Keywords in der Spalte content enthalten sind (case-insensitive)
content = row[1].lower() # Annahme: content ist die zweite Spalte, und wir wandeln ihn in Kleinbuchstaben um
keywords_lower = [keyword.lower() for keyword in keywords]
contains_keywords = all(keyword in content for keyword in keywords_lower)
# Verbindung schließen
conn.close()
return contains_keywords
def clear_temp_candidates():
if not st.session_state["final_candidates"]:
print("i am cleared")
st.session_state["docs_res"] = []
def load_candidates(fillup):
with st.spinner("Load the candidates, this may take a moment..."):
# print(st.session_state["job_string"])
filter_string = ""
query_string = "The following keywords must be included: " + text_area_params + " " + st.session_state["job_string"]
checked_candidates = []
db_path = 'cvdb.db'
table_name = 'files'
candidates_per_search = 100
target_candidates_count = 10
current_offset = 0
if st.session_state["screened"]:
filter_string = "amount_screenings gt 0 "
if st.session_state["handed"]:
if len(filter_string) > 0:
filter_string += "and amount_handoffs gt 0 "
else:
filter_string += "amount_handoffs gt 0 "
if st.session_state["placed"]:
if len(filter_string) > 0:
filter_string += "and amount_placed gt 0"
else:
filter_string += "amount_placed gt 0"
# print(filter_string)
if not fillup:
while len(checked_candidates) < target_candidates_count:
# # Führe eine similarity search durch und erhalte 100 Kandidaten
# if st.session_state["search_type"]:
# print("hybrid")
# # raw_candidates = st.session_state["db"].hybrid_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
# raw_candidates = st.session_state["db"].hybrid_search_with_score(query_string, k=candidates_per_search+current_offset, filters=filter_string)
# else:
# print("similarity")
# # raw_candidates = st.session_state["db"].similarity_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
# raw_candidates = st.session_state["db"].similarity_search_with_relevance_scores(query_string, k=candidates_per_search+current_offset, filters=filter_string)
#"Similarity", "Hybrid", "Semantic ranking"
if st.session_state["search_radio"] == "Similarity":
print("similarity")
# raw_candidates = st.session_state["db"].similarity_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
raw_candidates = st.session_state["db"].similarity_search_with_relevance_scores(query_string, k=candidates_per_search+current_offset, filters=filter_string)
elif st.session_state["search_radio"] == "Hybrid":
print("hybrid")
# raw_candidates = st.session_state["db"].hybrid_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
raw_candidates = st.session_state["db"].hybrid_search_with_score(query_string, k=candidates_per_search+current_offset, filters=filter_string)
elif st.session_state["search_radio"] == "Semantic ranking":
print("Semantic ranking")
print("Filter string"+filter_string)
print("query"+query_string)
print("offset: "+str(candidates_per_search+current_offset))
# raw_candidates = st.session_state["db"].hybrid_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
try:
raw_candidates = st.session_state["db"].semantic_hybrid_search_with_score_and_rerank(query_string, k=50, filters=filter_string)
except Exception as e:
print(f"Fehler beim laden der Kandidaten: {str(e)}")
raw_candidates = []
st.warning("Something went wrong. Please press 'Search candidates' again or reload the page.")
for candidate in raw_candidates[current_offset:]:
candidates_id = candidate[0].metadata["source"].split("/")[-1]
keyword_bool = check_keywords_in_content(db_path, table_name, candidates_id, text_area_params.split(','))
if keyword_bool:
checked_candidates.append(candidate)
# Überprüfe, ob die Zielanzahl erreicht wurde und breche die Schleife ab, wenn ja
if len(checked_candidates) >= target_candidates_count:
break
current_offset += candidates_per_search
if current_offset == 600:
break
# Setze die Ergebnisse in der Session State Variable
st.session_state["docs_res"] = checked_candidates
st.session_state["candidate_offset"] = current_offset
if len(checked_candidates) == 0:
st.error("No candidates can be found with these keywords. Please adjust the keywords and try again.", icon="🚨")
else:
# Setze die Zielanzahl auf 10
target_candidates_count = 10
current_offset = st.session_state["candidate_offset"]
# Solange die Anzahl der überprüften Kandidaten kleiner als die Zielanzahl ist
while len(st.session_state["docs_res"]) < target_candidates_count:
# Führe eine similarity search durch und erhalte 100 Kandidaten
if st.session_state["search_radio"] == "Similarity":
print("similarity")
# raw_candidates = st.session_state["db"].similarity_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
raw_candidates = st.session_state["db"].similarity_search_with_relevance_scores(query_string, k=candidates_per_search+current_offset, filters=filter_string)
elif st.session_state["search_radio"] == "Hybrid":
print("hybrid")
# raw_candidates = st.session_state["db"].hybrid_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
raw_candidates = st.session_state["db"].hybrid_search_with_score(query_string, k=candidates_per_search+current_offset, filters=filter_string)
elif st.session_state["search_radio"] == "Semantic ranking":
print("Semantic ranking")
print("Filter string"+filter_string)
print("query"+query_string)
print("offset: "+str(candidates_per_search+current_offset))
# raw_candidates = st.session_state["db"].hybrid_search(query_string, k=candidates_per_search+current_offset, filters=filter_string)
try:
raw_candidates = st.session_state["db"].semantic_hybrid_search_with_score_and_rerank(query_string, k=50, filters=filter_string)
except Exception as e:
print(f"Fehler beim laden der Kandidaten: {str(e)}")
raw_candidates = []
st.warning("Something went wrong. Please press 'Search candidates' again or reload the page.")
temp_offset_add = 0
for candidate in raw_candidates[current_offset:]:
candidates_id = candidate[0].metadata["source"].split("/")[-1]
keyword_bool = check_keywords_in_content(db_path, table_name, candidates_id, text_area_params.split(','))
if keyword_bool:
st.session_state["docs_res"].append(candidate)
temp_offset_add += 1
# Überprüfe, ob die Zielanzahl erreicht wurde und breche die Schleife ab, wenn ja
if len(st.session_state["docs_res"]) >= target_candidates_count:
st.session_state["candidate_offset"] = current_offset+temp_offset_add
break
current_offset += candidates_per_search
if current_offset == 900:
break
# Wenn die Liste immer noch leer ist, zeige eine Fehlermeldung an
if len(st.session_state["docs_res"]) == 0:
st.warning("No more candidates can be found.", icon="🔥")
if "similarity_search_string" not in st.session_state:
st.session_state["similarity_search_string"] = None
if "job_string" not in st.session_state:
st.session_state["job_string"] = None
if "docs_res" not in st.session_state:
st.session_state["docs_res"] = None
if "final_candidates" not in st.session_state:
st.session_state["final_candidates"] = None
if "final_question_string" not in st.session_state:
st.session_state["final_question_string"] = []
if "ai_questions" not in st.session_state:
st.session_state["ai_questions"] = None
if "raw_job" not in st.session_state:
st.session_state["raw_job"] = None
if "optimized_job" not in st.session_state:
st.session_state["optimized_job"] = None
if "candidate_offset" not in st.session_state:
st.session_state["candidate_offset"] = 0
if "db" not in st.session_state:
embedder = OpenAIEmbeddings(deployment="embedding", chunk_size=1)
embedding_function = embedder.embed_query
db = AzureSearch(
index_name="wg-cvs-data",
azure_search_endpoint=os.environ.get("AZURE_SEARCH_ENDPOINT"),
azure_search_key=os.environ.get("AZURE_SEARCH_KEY"),
embedding_function=embedding_function,
# fields=fields
)
st.session_state["db"] = db
col1, col2 = st.columns([2, 1])
col1.title("Candidate Search")
col2.image("https://www.workgenius.com/wp-content/uploads/2023/03/WorkGenius_navy-1.svg")
st.write("Please upload the job description for which you would like candidates to be proposed.")
uploaded_file_jobdescription = st.file_uploader("Upload the job description:", type=["pdf"], key="job")
# col_file, col_clear = st.columns([6,1])
# with col_file:
# uploaded_file_jobdescription = st.file_uploader("Upload the job description:", type=["pdf"], key="job")
# with col_clear:
# if st.button("Clear", use_container_width=True):
# streamlit_js_eval(js_expressions="parent.window.location.reload()")
if st.session_state["job"]:
if not st.session_state["job_string"]:
if not st.session_state["optimized_job"]:
with st.spinner("Optimizing the job description. This may take a moment..."):
pdf_data_jobdescription = st.session_state["job"].read()
pdf_data_jobdescription_string = ""
pdf_reader_job = PdfReader(io.BytesIO(pdf_data_jobdescription))
for page_num in range(len(pdf_reader_job.pages)):
page = pdf_reader_job.pages[page_num]
pdf_data_jobdescription_string += page.extract_text()
# st.session_state["pdf_data_jobdescription"] = pdf_data_jobdescription activate and add sessio state if data is needed
system_prompt_job = sys_prompt_optimization.format(job=pdf_data_jobdescription_string)
try:
res = openai.ChatCompletion.create(
engine="gpt-4",
temperature=0.2,
messages=[
{
"role": "system",
"content": system_prompt_job,
},
],
)
# print(res.choices[0]["message"]["content"])
output_string = f"""{res.choices[0]["message"]["content"]}"""
st.session_state["optimized_job"] = output_string
st.rerun()
except Exception as e:
print(f"Fehler beim generieren der optimierten JD: {str(e)}")
st.error("An error has occurred. Please reload the page or contact the admin.", icon="🚨")
# st.session_state["job_string"] = pdf_data_jobdescription_string
# print(output_string)
st.text_area("This is the AI-generated optimized job description. If necessary, change something to your liking:", value=st.session_state["optimized_job"], height=700, key="optimized_job_edited")
if st.button("Accept the job description"):
st.session_state["job_string"] = st.session_state["optimized_job_edited"]
st.rerun()
# st.write("Switch from a similarity search (default) to a hybrid search (activated)")
# st.toggle("Switch Search", key="search_type")
st.radio("Select a search variant",options=["Similarity", "Hybrid", "Semantic ranking"], key="search_radio",on_change=clear_temp_candidates)
st.write("Activate the following toggles to filter according to the respective properties:")
col_screening, col_handoff, col_placed = st.columns([1,1,1])
with col_screening:
st.toggle("Screened", key="screened")
with col_handoff:
st.toggle("Handed over", key="handed")
with col_placed:
st.toggle("Placed", key="placed")
text_area_params = st.text_area(label="Add additional search parameters, which are separated by commas (e.g. master, phd, web developer, spanish)")
submit = st.button("Search candidates",disabled= True if st.session_state["final_candidates"] else False)
if not st.session_state["job"] and submit:
st.error("Please upload a job description to search for candidates")
if st.session_state["docs_res"] and submit:
load_candidates(False)
if (st.session_state["job_string"] and submit) or st.session_state["docs_res"]:
# if not st.session_state["job_string"]:
# pdf_data_jobdescription = st.session_state["job"].read()
# pdf_data_jobdescription_string = ""
# pdf_reader_job = PdfReader(io.BytesIO(pdf_data_jobdescription))
# for page_num in range(len(pdf_reader_job.pages)):
# page = pdf_reader_job.pages[page_num]
# pdf_data_jobdescription_string += page.extract_text()
# # st.session_state["pdf_data_jobdescription"] = pdf_data_jobdescription activate and add sessio state if data is needed
# st.session_state["job_string"] = pdf_data_jobdescription_string
if not st.session_state["docs_res"]:
load_candidates(False)
if not st.session_state["final_candidates"]:
for i,doc in enumerate(st.session_state["docs_res"]):
# print(doc)
cols_final = st.columns([6,1])
with cols_final[1]:
if st.button("Remove",use_container_width=True,key="btn_rm_cv_row_"+str(i)):
# st.write(doc.page_content)
st.session_state["docs_res"].pop(i)
st.rerun()
with cols_final[0]:
# st.subheader(doc.metadata["source"])
if st.session_state["search_radio"] == "Similarity":
with st.expander(doc[0].metadata["name"]+" with a similarity percentage of: "+str(round(doc[1] * 100, 3))+ "%"):
st.write(doc[0].page_content)
elif st.session_state["search_radio"] == "Hybrid":
with st.expander(doc[0].metadata["name"]+" with a hybrid search score of: "+str(round(doc[1] * 100, 3))):
st.write(doc[0].page_content)
elif st.session_state["search_radio"] == "Semantic ranking":
with st.expander(doc[0].metadata["name"]+" with a rerank score of: "+str(round(doc[2] * 100, 3))):
st.write(doc[0].page_content)
if len(st.session_state["docs_res"])>=10:
if st.button("Accept candidates", key="accept_candidates_btn"):
print("hello")
st.session_state["final_candidates"] = st.session_state["docs_res"].copy()
st.rerun()
else:
col_accept, col_empty ,col_load_new = st.columns([2, 3, 2])
with col_accept:
if st.button("Accept candidates", key="accept_candidates_btn"):
print("hello")
st.session_state["final_candidates"] = st.session_state["docs_res"].copy()
st.rerun()
with col_load_new:
if st.button("Load new candidates", key="load_new_candidates"):
print("loading new candidates")
load_candidates(True)
st.rerun()
else:
print("Now Questions")
st.subheader("Your Candidates:")
st.write(", ".join(candidate[0].metadata["name"] for candidate in st.session_state["final_candidates"]))
# for i,candidate in enumerate(st.session_state["final_candidates"]):
# st.write(candidate.metadata["source"])
cv_strings = "; Next CV: ".join(candidate[0].page_content for candidate in st.session_state["final_candidates"])
# print(len(cv_strings))
system = sys_prompt.format(job=st.session_state["job_string"], resume=st.session_state["final_candidates"][0][0].page_content, n=15)
if not st.session_state["ai_questions"]:
try:
# st.write("The questions are generated. This may take a short moment...")
st.info("The questions are generated. This may take a short moment.", icon="ℹ️")
with st.spinner("Loading..."):
res = openai.ChatCompletion.create(
engine="gpt-4",
temperature=0.2,
messages=[
{
"role": "system",
"content": system,
},
],
)
st.session_state["ai_questions"] = [item for item in res.choices[0]["message"]["content"].split("\n") if len(item) > 0]
for i,q in enumerate(res.choices[0]["message"]["content"].split("\n")):
st.session_state["disable_row_"+str(i)] = False
st.rerun()
except Exception as e:
print(f"Fehler beim generieren der Fragen: {str(e)}")
st.error("An error has occurred. Please reload the page or contact the admin.", icon="🚨")
else:
if len(st.session_state["final_question_string"]) <= 0:
for i,question in enumerate(st.session_state["ai_questions"]):
cols = st.columns([5,1])
with cols[1]:
# if st.button("Accept",use_container_width=True,key="btn_accept_row_"+str(i)):
# print("accept")
# pattern = re.compile(r"^[1-9][0-9]?\.")
# questions_length = len(st.session_state["final_question_string"])
# question_from_text_area = st.session_state["text_area_"+str(i)]
# question_to_append = str(questions_length+1)+"."+re.sub(pattern, "", question_from_text_area)
# st.session_state["final_question_string"].append(question_to_append)
# st.session_state["disable_row_"+str(i)] = True
# st.rerun()
if st.button("Delete",use_container_width=True,key="btn_del_row_"+str(i)):
print("delete")
st.session_state["ai_questions"].remove(question)
st.rerun()
with cols[0]:
st.text_area(label="Question "+str(i+1)+":",value=question,label_visibility="collapsed",key="text_area_"+str(i),disabled=st.session_state["disable_row_"+str(i)])
st.write("If you are satisfied with the questions, then accept them. You can still sort them afterwards.")
if st.button("Accept all questions",use_container_width=True,key="accept_all_questions"):
for i,question in enumerate(st.session_state["ai_questions"]):
pattern = re.compile(r"^[1-9][0-9]?\.")
questions_length = len(st.session_state["final_question_string"])
question_from_text_area = st.session_state["text_area_"+str(i)]
question_to_append = str(questions_length+1)+"."+re.sub(pattern, "", question_from_text_area)
st.session_state["final_question_string"].append(question_to_append)
st.session_state["disable_row_"+str(i)] = True
st.rerun()
for i,final_q in enumerate(st.session_state["final_question_string"]):
cols_final = st.columns([5,1])
with cols_final[1]:
if st.button("Up",use_container_width=True,key="btn_up_row_"+str(i),disabled=True if i == 0 else False):
if i > 0:
# Tausche das aktuelle Element mit dem vorherigen Element
st.session_state.final_question_string[i], st.session_state.final_question_string[i - 1] = \
st.session_state.final_question_string[i - 1], st.session_state.final_question_string[i]
st.session_state.final_question_string = adjust_numbering(st.session_state.final_question_string)
st.rerun()
if st.button("Down",use_container_width=True,key="btn_down_row_"+str(i), disabled=True if i == len(st.session_state["final_question_string"])-1 else False):
if i < len(st.session_state.final_question_string) - 1:
# Tausche das aktuelle Element mit dem nächsten Element
st.session_state.final_question_string[i], st.session_state.final_question_string[i + 1] = \
st.session_state.final_question_string[i + 1], st.session_state.final_question_string[i]
st.session_state.final_question_string = adjust_numbering(st.session_state.final_question_string)
st.rerun()
with cols_final[0]:
st.write(final_q)
if len(st.session_state["final_question_string"])>0:
st.text_input("Enter the email address to which the test emails should be sent:",key="recruiter_mail")
st.text_input("Enter the phone number to which the test SMS should be sent (With country code, e.g. +1 for the USA or +49 for Germany):",key="recruiter_phone")
st.text_input("Enter the job title:", key="job_title")
if st.button("Submit", use_container_width=True):
with st.spinner("Generation and dispatch of mails. This process may take a few minutes..."):
sg = sendgrid.SendGridAPIClient(api_key=os.environ.get('SENDGRID_API'))
# Sender- und Empfänger-E-Mail-Adressen
sender_email = "[email protected]"
receiver_email = st.session_state["recruiter_mail"]
print(receiver_email)
subject = "Mails for potential candidates for the following position: "+st.session_state["job_title"]
message = f"""Dear Recruiter,
enclosed in the text file you will find the e-mails that are sent to the potential candidates.
The subject of the mail would be the following: Are you interested in a new position as a {st.session_state["job_title"]}?
Sincerely,
Your Candidate-Search-Tool
"""
# SendGrid-E-Mail erstellen
message = Mail(
from_email=sender_email,
to_emails=receiver_email,
subject=subject,
plain_text_content=message,
)
data = {
"title": st.session_state["job_title"],
"email": st.session_state["recruiter_mail"],
"question_one": "",
"question_two": "",
"question_three": "",
}
json_data = json.dumps(data, ensure_ascii=False)
# Eine zufällige UUID generieren
random_uuid = uuid.uuid4()
# Die UUID als String darstellen
uuid_string = str(random_uuid)
pdf_name = uuid_string
cvs_data = []
temp_pdf_file = "candidate_pdf.pdf"
for candidate in st.session_state["final_candidates"]:
styles = getSampleStyleSheet()
pdf = SimpleDocTemplate(temp_pdf_file)
flowables = [Paragraph(candidate[0].page_content, styles['Normal'])]
pdf.build(flowables)
with open(temp_pdf_file, 'rb') as pdf_file:
bytes_data = pdf_file.read()
cvs_data.append(bytes_data)
os.remove(temp_pdf_file)
candidate_links = upload_blob(pdf_name, json_data, st.session_state["job"].read(),cvs_data,True,st.session_state["final_question_string"])
mail_txt_string = ""
for i, candidate in enumerate(st.session_state["final_candidates"]):
if i > 0:
mail_txt_string += "\n\nMail to the "+str(i+1)+". candidate: "+candidate[0].metadata["name"]+" "+candidate[0].metadata["candidateId"]+" \n\n"
else:
mail_txt_string += "Mail to the "+str(i+1)+". candidate: "+candidate[0].metadata["name"]+" "+candidate[0].metadata["candidateId"]+" \n\n"
mail_txt_string += generate_candidate_mail(candidate,candidate_links[i])
# Summary in eine TXT Datei schreiben
mail_txt_path = "mailattachment.txt"
with open(mail_txt_path, 'wb') as summary_file:
summary_file.write(mail_txt_string.encode('utf-8'))
# Resume als Anhang hinzufügen
with open(mail_txt_path, 'rb') as summary_file:
encode_file_summary = base64.b64encode(summary_file.read()).decode()
summary_attachment = Attachment()
summary_attachment.file_content = FileContent(encode_file_summary)
summary_attachment.file_name = FileName('candidate_mails.txt')
summary_attachment.file_type = FileType('text/plain')
summary_attachment.disposition = Disposition('attachment')
message.attachment = summary_attachment
try:
response = sg.send(message)
print("E-Mail wurde erfolgreich gesendet. Statuscode:", response.status_code)
os.remove("mailattachment.txt")
except Exception as e:
print("Fehler beim Senden der E-Mail:", str(e))
st.error("Unfortunately the mail dispatch did not work. Please reload the page and try again or contact the administrator. ", icon="🚨")
try:
bullets = generate_job_bullets(st.session_state["job_string"])
client = Client(os.getenv("TWILIO_SID"), os.getenv("TWILIO_API"))
message_body = f"Dear candidate,\n\nare you interested in the following position: \n"+st.session_state["job_title"]+"\n\n"+bullets+"\n\nThen please answer with 'yes'\n\nSincerely,\n"+"WorkGenius"
message = client.messages.create(
to=st.session_state["recruiter_phone"],
from_="+1 857 214 8753",
body=message_body
)
print(f"Message sent with SID: {message.sid}")
st.success('The dispatch and the upload of the data was successful')
except Exception as e:
st.error("Unfortunately the SMS dispatch did not work. Please reload the page and try again or contact the administrator. ", icon="🚨")
print("Fehler beim Senden der SMS:", str(e))