Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from openai import OpenAI | |
from openai.error import BadRequestError | |
# Retrieve the Hugging Face API token from environment variables | |
TOKEN = os.getenv("HF_TOKEN") | |
if not TOKEN: | |
raise ValueError("Hugging Face API token (HF_TOKEN) not set in environment variables.") | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=TOKEN, | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for user_message, assistant_message in history: | |
if user_message: | |
messages.append({"role": "user", "content": user_message}) | |
if assistant_message: | |
messages.append({"role": "assistant", "content": assistant_message}) | |
messages.append({"role": "user", "content": message}) | |
try: | |
response = "" | |
for msg in client.chat.completions.create( | |
model="meta-llama/Meta-Llama-3.1-405B-Instruct-FP8", | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
messages=messages, | |
): | |
token = msg.choices[0].delta.content | |
response += token | |
yield response | |
except BadRequestError as e: | |
error_message = f"Error: {e}. Please ensure your Hugging Face token is valid and you have a Pro subscription." | |
yield error_message | |
# Define the Gradio interface | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |