Spaces:
Runtime error
Runtime error
Putting it all together
You can use Doc2Query in an indexing pipeline to build an index of the expanded documents:
D
Doc2Query
D
Indexer
IDX
import pyterrer as pt
pt.init()
import pyterrier_doc2query
doc2query = pyterrier_doc2query.Doc2Query(append=True)
dataset = pt.get_dataset('irds:msmarco-passage')
indexer = pt.IterDictIndexer('./msmarco_psg')
indxer_pipe = doc2query >> indexer
indxer_pipe.index(dataset.get_corpus_iter())
Once you built an index, you can retrieve from it using any retrieval function (often BM25):
Q
BM25 Retriever
IDX
R
bm25 = pt.BatchRetrieve('./msmarco_psg', wmodel="BM25")
References & Credits
- Rodrigo Nogueira and Jimmy Lin. From doc2query to docTTTTTquery.
- Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, Iadh Ounis. PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval. CIKM 2021.