|
|
|
import simplestart as ss |
|
import pandas as pd |
|
|
|
ss.md(''' |
|
## Iris Dataset |
|
The dataset contains 150 samples divided into 3 classes: Setosa, Versicolor, and Virginica. Each class has 50 samples, and each sample includes 4 attributes. |
|
''') |
|
|
|
ss.space() |
|
|
|
title = "Table 1. Iris Dataset" |
|
subtitle = "sepal_length: length of the sepal, sepal_width: width of the sepal, petal_length: length of the petal, petal_width: width of the petal" |
|
|
|
pd.options.display.float_format = '{:.2f}'.format |
|
df = pd.read_csv("./data/iris.csv") |
|
|
|
ss.table(df, index=True, title=title, subtitle=subtitle, width=400) |
|
|
|
ss.table(df.describe(), index=True) |
|
|
|
ss.md("---") |
|
|
|
import numpy as np |
|
|
|
np.random.seed(0) |
|
|
|
num_rows = 10000 |
|
data = { |
|
'Column1': np.random.randint(0, 100, size=num_rows), |
|
'Column2': np.random.random(size=num_rows), |
|
'Column3': np.random.choice(['A', 'B', 'C', 'D'], size=num_rows), |
|
} |
|
|