Demo_Iris_Classification_En / pages /004 model_sample.py
test2023h5's picture
Upload 15 files
616004e verified
### Prediction Instance
# The original source code:
# https://github.com/AzeemWaqarRao/Streamlit-Iris-Classification-App
import simplestart as ss
from sklearn.datasets import load_iris
import pandas as pd
import pickle
import numpy as np
# Data and API
species = ['setosa', 'versicolor', 'virginica']
image = ['./images/setosa.jpg', './images/versicolor.jpg', './images/virginica.jpg']
with open('./data/model.pkl', 'rb') as f:
model = pickle.load(f)
def slidechange(event):
predict()
def predict():
# Getting prediction from model
inp = np.array([sepal_length.value, sepal_width.value, petal_length.value, petal_width.value])
inp = np.expand_dims(inp, axis=0)
prediction = model.predict_proba(inp)
## Show results when prediction is done
if True:
df = pd.DataFrame(prediction, index=['result'], columns=species).round(4)
table_result.data = df
ss.session["result"] = species[np.argmax(prediction)]
image_flower.image = image[np.argmax(prediction)]
# UI
with ss.sidebar():
ss.write("### Inputs")
sepal_length = ss.slider("sepal length (cm)", 4.3, 7.9, 5.0, onchange=slidechange)
sepal_width = ss.slider("sepal width (cm)", 2.0, 4.4, 3.6, onchange=slidechange)
petal_length = ss.slider("petal length (cm)", 1.0, 6.9, 1.4, onchange=slidechange)
petal_width = ss.slider("petal width (cm)", 0.1, 2.5, 0.2, onchange=slidechange)
ss.write("## Iris Flower Classification Prediction")
ss.write("Change the sepal and petal length and width to predict among the 3 possible categories.")
ss.write('''
# Results
Following is the probability of each class
''')
ss.space()
table_result = ss.table(show_border=True)
ss.write("**This flower belongs to the @result" + " class**")
ss.space()
image_flower = ss.image(image[0])
predict()