|
|
|
|
|
|
|
import simplestart as ss |
|
|
|
from sklearn.datasets import load_iris |
|
import pandas as pd |
|
import pickle |
|
import numpy as np |
|
|
|
|
|
species = ['setosa', 'versicolor', 'virginica'] |
|
image = ['./images/setosa.jpg', './images/versicolor.jpg', './images/virginica.jpg'] |
|
with open('./data/model.pkl', 'rb') as f: |
|
model = pickle.load(f) |
|
|
|
def slidechange(event): |
|
predict() |
|
|
|
def predict(): |
|
|
|
inp = np.array([sepal_length.value, sepal_width.value, petal_length.value, petal_width.value]) |
|
inp = np.expand_dims(inp, axis=0) |
|
prediction = model.predict_proba(inp) |
|
|
|
|
|
if True: |
|
df = pd.DataFrame(prediction, index=['result'], columns=species).round(4) |
|
table_result.data = df |
|
ss.session["result"] = species[np.argmax(prediction)] |
|
image_flower.image = image[np.argmax(prediction)] |
|
|
|
|
|
with ss.sidebar(): |
|
ss.write("### Inputs") |
|
|
|
sepal_length = ss.slider("sepal length (cm)", 4.3, 7.9, 5.0, onchange=slidechange) |
|
sepal_width = ss.slider("sepal width (cm)", 2.0, 4.4, 3.6, onchange=slidechange) |
|
petal_length = ss.slider("petal length (cm)", 1.0, 6.9, 1.4, onchange=slidechange) |
|
petal_width = ss.slider("petal width (cm)", 0.1, 2.5, 0.2, onchange=slidechange) |
|
|
|
ss.write("## Iris Flower Classification Prediction") |
|
ss.write("Change the sepal and petal length and width to predict among the 3 possible categories.") |
|
|
|
ss.write(''' |
|
# Results |
|
Following is the probability of each class |
|
''') |
|
|
|
ss.space() |
|
|
|
table_result = ss.table(show_border=True) |
|
ss.write("**This flower belongs to the @result" + " class**") |
|
|
|
ss.space() |
|
|
|
image_flower = ss.image(image[0]) |
|
|
|
predict() |
|
|