thaitung's picture
Add application file
f8c2d34
import gradio as gr
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
def transcribe(audio):
result = pipe(audio)
return result["text"]
demo = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="upload", type="filepath"),
outputs="text",
title="Whisper Large-v3 ASR",
description="Transcribe audio files using the Whisper large-v3 model"
)
if __name__ == "__main__":
demo.launch()