deanna-emery's picture
updates
93528c6
# BERT (Bidirectional Encoder Representations from Transformers)
**WARNING**: We are on the way to deprecating most of the code in this directory.
Please see
[this link](../g3doc/tutorials/bert_new.md)
for the new tutorial and use the new code in `nlp/modeling`. This README is
still correct for this legacy implementation.
The academic paper which describes BERT in detail and provides full results on a
number of tasks can be found here: https://arxiv.org/abs/1810.04805.
This repository contains TensorFlow 2.x implementation for BERT.
## Contents
* [Contents](#contents)
* [Pre-trained Models](#pre-trained-models)
* [Restoring from Checkpoints](#restoring-from-checkpoints)
* [Set Up](#set-up)
* [Process Datasets](#process-datasets)
* [Fine-tuning with BERT](#fine-tuning-with-bert)
* [Cloud GPUs and TPUs](#cloud-gpus-and-tpus)
* [Sentence and Sentence-pair Classification Tasks](#sentence-and-sentence-pair-classification-tasks)
* [SQuAD 1.1](#squad-1.1)
## Pre-trained Models
We released both checkpoints and tf.hub modules as the pretrained models for
fine-tuning. They are TF 2.x compatible and are converted from the checkpoints
released in TF 1.x official BERT repository
[google-research/bert](https://github.com/google-research/bert)
in order to keep consistent with BERT paper.
### Access to Pretrained Checkpoints
Pretrained checkpoints can be found in the following links:
**Note: We have switched BERT implementation
to use Keras functional-style networks in [nlp/modeling](../modeling).
The new checkpoints are:**
* **[`BERT-Large, Uncased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_uncased_L-24_H-1024_A-16.tar.gz)**:
24-layer, 1024-hidden, 16-heads, 340M parameters
* **[`BERT-Large, Cased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_cased_L-24_H-1024_A-16.tar.gz)**:
24-layer, 1024-hidden, 16-heads, 340M parameters
* **[`BERT-Base, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12.tar.gz)**:
12-layer, 768-hidden, 12-heads, 110M parameters
* **[`BERT-Large, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16.tar.gz)**:
24-layer, 1024-hidden, 16-heads, 340M parameters
* **[`BERT-Base, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-12_H-768_A-12.tar.gz)**:
12-layer, 768-hidden, 12-heads , 110M parameters
* **[`BERT-Large, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-24_H-1024_A-16.tar.gz)**:
24-layer, 1024-hidden, 16-heads, 340M parameters
* **[`BERT-Base, Multilingual Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/multi_cased_L-12_H-768_A-12.tar.gz)**:
104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
We recommend to host checkpoints on Google Cloud Storage buckets when you use
Cloud GPU/TPU.
### Restoring from Checkpoints
`tf.train.Checkpoint` is used to manage model checkpoints in TF 2. To restore
weights from provided pre-trained checkpoints, you can use the following code:
```python
init_checkpoint='the pretrained model checkpoint path.'
model=tf.keras.Model() # Bert pre-trained model as feature extractor.
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(init_checkpoint)
```
Checkpoints featuring native serialized Keras models
(i.e. model.load()/load_weights()) will be available soon.
### Access to Pretrained hub modules.
Pretrained tf.hub modules in TF 2.x SavedModel format can be found in the
following links:
* **[`BERT-Large, Uncased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_uncased_L-24_H-1024_A-16/)**:
24-layer, 1024-hidden, 16-heads, 340M parameters
* **[`BERT-Large, Cased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_cased_L-24_H-1024_A-16/)**:
24-layer, 1024-hidden, 16-heads, 340M parameters
* **[`BERT-Base, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/)**:
12-layer, 768-hidden, 12-heads, 110M parameters
* **[`BERT-Large, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/)**:
24-layer, 1024-hidden, 16-heads, 340M parameters
* **[`BERT-Base, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-12_H-768_A-12/)**:
12-layer, 768-hidden, 12-heads , 110M parameters
* **[`BERT-Large, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-24_H-1024_A-16/)**:
24-layer, 1024-hidden, 16-heads, 340M parameters
* **[`BERT-Base, Multilingual Cased`](https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/)**:
104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
* **[`BERT-Base, Chinese`](https://tfhub.dev/tensorflow/bert_zh_L-12_H-768_A-12/)**:
Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads,
110M parameters
## Set Up
```shell
export PYTHONPATH="$PYTHONPATH:/path/to/models"
```
Install `tf-nightly` to get latest updates:
```shell
pip install tf-nightly-gpu
```
With TPU, GPU support is not necessary. First, you need to create a `tf-nightly`
TPU with [ctpu tool](https://github.com/tensorflow/tpu/tree/master/tools/ctpu):
```shell
ctpu up -name <instance name> --tf-version=”nightly”
```
Second, you need to install TF 2 `tf-nightly` on your VM:
```shell
pip install tf-nightly
```
## Process Datasets
### Pre-training
There is no change to generate pre-training data. Please use the script
[`../data/create_pretraining_data.py`](../data/create_pretraining_data.py)
which is essentially branched from the [BERT research repo](https://github.com/google-research/bert)
to get processed pre-training data and it adapts to TF2 symbols and python3
compatibility.
Running the pre-training script requires an input and output directory, as well as a vocab file. Note that max_seq_length will need to match the sequence length parameter you specify when you run pre-training.
Example shell script to call create_pretraining_data.py
```
export WORKING_DIR='local disk or cloud location'
export BERT_DIR='local disk or cloud location'
python models/official/nlp/data/create_pretraining_data.py \
--input_file=$WORKING_DIR/input/input.txt \
--output_file=$WORKING_DIR/output/tf_examples.tfrecord \
--vocab_file=$BERT_DIR/wwm_uncased_L-24_H-1024_A-16/vocab.txt \
--do_lower_case=True \
--max_seq_length=512 \
--max_predictions_per_seq=76 \
--masked_lm_prob=0.15 \
--random_seed=12345 \
--dupe_factor=5
```
### Fine-tuning
To prepare the fine-tuning data for final model training, use the
[`../data/create_finetuning_data.py`](../data/create_finetuning_data.py) script.
Resulting datasets in `tf_record` format and training meta data should be later
passed to training or evaluation scripts. The task-specific arguments are
described in the following sections:
* GLUE
Users can download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
Also, users can download [Pretrained Checkpoint](#access-to-pretrained-checkpoints) and locate it on some directory `$BERT_DIR` instead of using checkpoints on Google Cloud Storage.
```shell
export GLUE_DIR=~/glue
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export TASK_NAME=MNLI
export OUTPUT_DIR=gs://some_bucket/datasets
python ../data/create_finetuning_data.py \
--input_data_dir=${GLUE_DIR}/${TASK_NAME}/ \
--vocab_file=${BERT_DIR}/vocab.txt \
--train_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_train.tf_record \
--eval_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_eval.tf_record \
--meta_data_file_path=${OUTPUT_DIR}/${TASK_NAME}_meta_data \
--fine_tuning_task_type=classification --max_seq_length=128 \
--classification_task_name=${TASK_NAME}
```
* SQUAD
The [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/) contains
detailed information about the SQuAD datasets and evaluation.
The necessary files can be found here:
* [train-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json)
* [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json)
* [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py)
* [train-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json)
* [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json)
* [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/)
```shell
export SQUAD_DIR=~/squad
export SQUAD_VERSION=v1.1
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export OUTPUT_DIR=gs://some_bucket/datasets
python ../data/create_finetuning_data.py \
--squad_data_file=${SQUAD_DIR}/train-${SQUAD_VERSION}.json \
--vocab_file=${BERT_DIR}/vocab.txt \
--train_data_output_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--meta_data_file_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_meta_data \
--fine_tuning_task_type=squad --max_seq_length=384
```
Note: To create fine-tuning data with SQUAD 2.0, you need to add flag `--version_2_with_negative=True`.
## Fine-tuning with BERT
### Cloud GPUs and TPUs
* Cloud Storage
The unzipped pre-trained model files can also be found in the Google Cloud
Storage folder `gs://cloud-tpu-checkpoints/bert/keras_bert`. For example:
```shell
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export MODEL_DIR=gs://some_bucket/my_output_dir
```
Currently, users are able to access to `tf-nightly` TPUs and the following TPU
script should run with `tf-nightly`.
* GPU -> TPU
Just add the following flags to `run_classifier.py` or `run_squad.py`:
```shell
--distribution_strategy=tpu
--tpu=grpc://${TPU_IP_ADDRESS}:8470
```
### Sentence and Sentence-pair Classification Tasks
This example code fine-tunes `BERT-Large` on the Microsoft Research Paraphrase
Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a
few minutes on most GPUs.
We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).
```shell
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
export TASK=MRPC
python run_classifier.py \
--mode='train_and_eval' \
--input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
--train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
--eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
--bert_config_file=${BERT_DIR}/bert_config.json \
--init_checkpoint=${BERT_DIR}/bert_model.ckpt \
--train_batch_size=4 \
--eval_batch_size=4 \
--steps_per_loop=1 \
--learning_rate=2e-5 \
--num_train_epochs=3 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=mirrored
```
Alternatively, instead of specifying `init_checkpoint`, you can specify
`hub_module_url` to employ a pre-trained BERT hub module, e.g.,
` --hub_module_url=https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1`.
After training a model, to get predictions from the classifier, you can set the
`--mode=predict` and offer the test set tfrecords to `--eval_data_path`.
The output will be created in file called test_results.tsv in the output folder.
Each line will contain output for each sample, columns are the class
probabilities.
```shell
python run_classifier.py \
--mode='predict' \
--input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
--eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
--bert_config_file=${BERT_DIR}/bert_config.json \
--eval_batch_size=4 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=mirrored
```
To use TPU, you only need to switch the distribution strategy type to `tpu` with TPU
information and use remote storage for model checkpoints.
```shell
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
export TASK=MRPC
python run_classifier.py \
--mode='train_and_eval' \
--input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
--train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
--eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
--bert_config_file=${BERT_DIR}/bert_config.json \
--init_checkpoint=${BERT_DIR}/bert_model.ckpt \
--train_batch_size=32 \
--eval_batch_size=32 \
--steps_per_loop=1000 \
--learning_rate=2e-5 \
--num_train_epochs=3 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=tpu \
--tpu=grpc://${TPU_IP_ADDRESS}:8470
```
Note that, we specify `steps_per_loop=1000` for TPU, because running a loop of
training steps inside a `tf.function` can significantly increase TPU utilization
and callbacks will not be called inside the loop.
### SQuAD 1.1
The Stanford Question Answering Dataset (SQuAD) is a popular question answering
benchmark dataset. See more on [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/).
We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).
```shell
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export SQUAD_DIR=gs://some_bucket/datasets
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_VERSION=v1.1
python run_squad.py \
--input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
--train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--predict_file=${SQUAD_DIR}/dev-v1.1.json \
--vocab_file=${BERT_DIR}/vocab.txt \
--bert_config_file=${BERT_DIR}/bert_config.json \
--init_checkpoint=${BERT_DIR}/bert_model.ckpt \
--train_batch_size=4 \
--predict_batch_size=4 \
--learning_rate=8e-5 \
--num_train_epochs=2 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=mirrored
```
Similarly, you can replace `init_checkpoint` FLAG with `hub_module_url` to
specify a hub module path.
`run_squad.py` writes the prediction for `--predict_file` by default. If you set
the `--model=predict` and offer the SQuAD test data, the scripts will generate
the prediction json file.
To use TPU, you need to switch the distribution strategy type to `tpu` with TPU
information.
```shell
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_DIR=gs://some_bucket/datasets
export SQUAD_VERSION=v1.1
python run_squad.py \
--input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
--train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
--predict_file=${SQUAD_DIR}/dev-v1.1.json \
--vocab_file=${BERT_DIR}/vocab.txt \
--bert_config_file=${BERT_DIR}/bert_config.json \
--init_checkpoint=${BERT_DIR}/bert_model.ckpt \
--train_batch_size=32 \
--learning_rate=8e-5 \
--num_train_epochs=2 \
--model_dir=${MODEL_DIR} \
--distribution_strategy=tpu \
--tpu=grpc://${TPU_IP_ADDRESS}:8470
```
The dev set predictions will be saved into a file called predictions.json in the
model_dir:
```shell
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ./squad/predictions.json
```