Spaces:
Sleeping
Sleeping
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Data parser and processing for Mask R-CNN.""" | |
import tensorflow as tf, tf_keras | |
from official.legacy.detection.dataloader import anchor | |
from official.legacy.detection.dataloader import mode_keys as ModeKeys | |
from official.legacy.detection.dataloader import tf_example_decoder | |
from official.legacy.detection.utils import box_utils | |
from official.legacy.detection.utils import dataloader_utils | |
from official.legacy.detection.utils import input_utils | |
class Parser(object): | |
"""Parser to parse an image and its annotations into a dictionary of tensors.""" | |
def __init__(self, | |
output_size, | |
min_level, | |
max_level, | |
num_scales, | |
aspect_ratios, | |
anchor_size, | |
rpn_match_threshold=0.7, | |
rpn_unmatched_threshold=0.3, | |
rpn_batch_size_per_im=256, | |
rpn_fg_fraction=0.5, | |
aug_rand_hflip=False, | |
aug_scale_min=1.0, | |
aug_scale_max=1.0, | |
skip_crowd_during_training=True, | |
max_num_instances=100, | |
include_mask=False, | |
mask_crop_size=112, | |
use_bfloat16=True, | |
mode=None): | |
"""Initializes parameters for parsing annotations in the dataset. | |
Args: | |
output_size: `Tensor` or `list` for [height, width] of output image. The | |
output_size should be divided by the largest feature stride 2^max_level. | |
min_level: `int` number of minimum level of the output feature pyramid. | |
max_level: `int` number of maximum level of the output feature pyramid. | |
num_scales: `int` number representing intermediate scales added | |
on each level. For instances, num_scales=2 adds one additional | |
intermediate anchor scales [2^0, 2^0.5] on each level. | |
aspect_ratios: `list` of float numbers representing the aspect raito | |
anchors added on each level. The number indicates the ratio of width to | |
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors | |
on each scale level. | |
anchor_size: `float` number representing the scale of size of the base | |
anchor to the feature stride 2^level. | |
rpn_match_threshold: | |
rpn_unmatched_threshold: | |
rpn_batch_size_per_im: | |
rpn_fg_fraction: | |
aug_rand_hflip: `bool`, if True, augment training with random | |
horizontal flip. | |
aug_scale_min: `float`, the minimum scale applied to `output_size` for | |
data augmentation during training. | |
aug_scale_max: `float`, the maximum scale applied to `output_size` for | |
data augmentation during training. | |
skip_crowd_during_training: `bool`, if True, skip annotations labeled with | |
`is_crowd` equals to 1. | |
max_num_instances: `int` number of maximum number of instances in an | |
image. The groundtruth data will be padded to `max_num_instances`. | |
include_mask: a bool to indicate whether parse mask groundtruth. | |
mask_crop_size: the size which groundtruth mask is cropped to. | |
use_bfloat16: `bool`, if True, cast output image to tf.bfloat16. | |
mode: a ModeKeys. Specifies if this is training, evaluation, prediction | |
or prediction with groundtruths in the outputs. | |
""" | |
self._mode = mode | |
self._max_num_instances = max_num_instances | |
self._skip_crowd_during_training = skip_crowd_during_training | |
self._is_training = (mode == ModeKeys.TRAIN) | |
self._example_decoder = tf_example_decoder.TfExampleDecoder( | |
include_mask=include_mask) | |
# Anchor. | |
self._output_size = output_size | |
self._min_level = min_level | |
self._max_level = max_level | |
self._num_scales = num_scales | |
self._aspect_ratios = aspect_ratios | |
self._anchor_size = anchor_size | |
# Target assigning. | |
self._rpn_match_threshold = rpn_match_threshold | |
self._rpn_unmatched_threshold = rpn_unmatched_threshold | |
self._rpn_batch_size_per_im = rpn_batch_size_per_im | |
self._rpn_fg_fraction = rpn_fg_fraction | |
# Data augmentation. | |
self._aug_rand_hflip = aug_rand_hflip | |
self._aug_scale_min = aug_scale_min | |
self._aug_scale_max = aug_scale_max | |
# Mask. | |
self._include_mask = include_mask | |
self._mask_crop_size = mask_crop_size | |
# Device. | |
self._use_bfloat16 = use_bfloat16 | |
# Data is parsed depending on the model Modekey. | |
if mode == ModeKeys.TRAIN: | |
self._parse_fn = self._parse_train_data | |
elif mode == ModeKeys.EVAL: | |
self._parse_fn = self._parse_eval_data | |
elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT: | |
self._parse_fn = self._parse_predict_data | |
else: | |
raise ValueError('mode is not defined.') | |
def __call__(self, value): | |
"""Parses data to an image and associated training labels. | |
Args: | |
value: a string tensor holding a serialized tf.Example proto. | |
Returns: | |
image, labels: if mode == ModeKeys.TRAIN. see _parse_train_data. | |
{'images': image, 'labels': labels}: if mode == ModeKeys.PREDICT | |
or ModeKeys.PREDICT_WITH_GT. | |
""" | |
with tf.name_scope('parser'): | |
data = self._example_decoder.decode(value) | |
return self._parse_fn(data) | |
def _parse_train_data(self, data): | |
"""Parses data for training. | |
Args: | |
data: the decoded tensor dictionary from TfExampleDecoder. | |
Returns: | |
image: image tensor that is preproessed to have normalized value and | |
dimension [output_size[0], output_size[1], 3] | |
labels: a dictionary of tensors used for training. The following describes | |
{key: value} pairs in the dictionary. | |
image_info: a 2D `Tensor` that encodes the information of the image and | |
the applied preprocessing. It is in the format of | |
[[original_height, original_width], [scaled_height, scaled_width], | |
anchor_boxes: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, 4] representing anchor boxes at each level. | |
rpn_score_targets: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, anchors_per_location]. The height_l and | |
width_l represent the dimension of class logits at l-th level. | |
rpn_box_targets: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, anchors_per_location * 4]. The height_l and | |
width_l represent the dimension of bounding box regression output at | |
l-th level. | |
gt_boxes: Groundtruth bounding box annotations. The box is represented | |
in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled | |
image that is fed to the network. The tennsor is padded with -1 to | |
the fixed dimension [self._max_num_instances, 4]. | |
gt_classes: Groundtruth classes annotations. The tennsor is padded | |
with -1 to the fixed dimension [self._max_num_instances]. | |
gt_masks: groundtrugh masks cropped by the bounding box and | |
resized to a fixed size determined by mask_crop_size. | |
""" | |
classes = data['groundtruth_classes'] | |
boxes = data['groundtruth_boxes'] | |
if self._include_mask: | |
masks = data['groundtruth_instance_masks'] | |
is_crowds = data['groundtruth_is_crowd'] | |
# Skips annotations with `is_crowd` = True. | |
if self._skip_crowd_during_training and self._is_training: | |
num_groundtruths = tf.shape(classes)[0] | |
with tf.control_dependencies([num_groundtruths, is_crowds]): | |
indices = tf.cond( | |
tf.greater(tf.size(is_crowds), 0), | |
lambda: tf.where(tf.logical_not(is_crowds))[:, 0], | |
lambda: tf.cast(tf.range(num_groundtruths), tf.int64)) | |
classes = tf.gather(classes, indices) | |
boxes = tf.gather(boxes, indices) | |
if self._include_mask: | |
masks = tf.gather(masks, indices) | |
# Gets original image and its size. | |
image = data['image'] | |
image_shape = tf.shape(image)[0:2] | |
# Normalizes image with mean and std pixel values. | |
image = input_utils.normalize_image(image) | |
# Flips image randomly during training. | |
if self._aug_rand_hflip: | |
if self._include_mask: | |
image, boxes, masks = input_utils.random_horizontal_flip( | |
image, boxes, masks) | |
else: | |
image, boxes = input_utils.random_horizontal_flip( | |
image, boxes) | |
# Converts boxes from normalized coordinates to pixel coordinates. | |
# Now the coordinates of boxes are w.r.t. the original image. | |
boxes = box_utils.denormalize_boxes(boxes, image_shape) | |
# Resizes and crops image. | |
image, image_info = input_utils.resize_and_crop_image( | |
image, | |
self._output_size, | |
padded_size=input_utils.compute_padded_size( | |
self._output_size, 2 ** self._max_level), | |
aug_scale_min=self._aug_scale_min, | |
aug_scale_max=self._aug_scale_max) | |
image_height, image_width, _ = image.get_shape().as_list() | |
# Resizes and crops boxes. | |
# Now the coordinates of boxes are w.r.t the scaled image. | |
image_scale = image_info[2, :] | |
offset = image_info[3, :] | |
boxes = input_utils.resize_and_crop_boxes( | |
boxes, image_scale, image_info[1, :], offset) | |
# Filters out ground truth boxes that are all zeros. | |
indices = box_utils.get_non_empty_box_indices(boxes) | |
boxes = tf.gather(boxes, indices) | |
classes = tf.gather(classes, indices) | |
if self._include_mask: | |
masks = tf.gather(masks, indices) | |
# Transfer boxes to the original image space and do normalization. | |
cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) | |
cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) | |
cropped_boxes = box_utils.normalize_boxes(cropped_boxes, image_shape) | |
num_masks = tf.shape(masks)[0] | |
masks = tf.image.crop_and_resize( | |
tf.expand_dims(masks, axis=-1), | |
cropped_boxes, | |
box_indices=tf.range(num_masks, dtype=tf.int32), | |
crop_size=[self._mask_crop_size, self._mask_crop_size], | |
method='bilinear') | |
masks = tf.squeeze(masks, axis=-1) | |
# Assigns anchor targets. | |
# Note that after the target assignment, box targets are absolute pixel | |
# offsets w.r.t. the scaled image. | |
input_anchor = anchor.Anchor( | |
self._min_level, | |
self._max_level, | |
self._num_scales, | |
self._aspect_ratios, | |
self._anchor_size, | |
(image_height, image_width)) | |
anchor_labeler = anchor.RpnAnchorLabeler( | |
input_anchor, | |
self._rpn_match_threshold, | |
self._rpn_unmatched_threshold, | |
self._rpn_batch_size_per_im, | |
self._rpn_fg_fraction) | |
rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors( | |
boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32)) | |
# If bfloat16 is used, casts input image to tf.bfloat16. | |
if self._use_bfloat16: | |
image = tf.cast(image, dtype=tf.bfloat16) | |
inputs = { | |
'image': image, | |
'image_info': image_info, | |
} | |
# Packs labels for model_fn outputs. | |
labels = { | |
'anchor_boxes': input_anchor.multilevel_boxes, | |
'image_info': image_info, | |
'rpn_score_targets': rpn_score_targets, | |
'rpn_box_targets': rpn_box_targets, | |
} | |
inputs['gt_boxes'] = input_utils.pad_to_fixed_size(boxes, | |
self._max_num_instances, | |
-1) | |
inputs['gt_classes'] = input_utils.pad_to_fixed_size( | |
classes, self._max_num_instances, -1) | |
if self._include_mask: | |
inputs['gt_masks'] = input_utils.pad_to_fixed_size( | |
masks, self._max_num_instances, -1) | |
return inputs, labels | |
def _parse_eval_data(self, data): | |
"""Parses data for evaluation.""" | |
raise NotImplementedError('Not implemented!') | |
def _parse_predict_data(self, data): | |
"""Parses data for prediction. | |
Args: | |
data: the decoded tensor dictionary from TfExampleDecoder. | |
Returns: | |
A dictionary of {'images': image, 'labels': labels} where | |
image: image tensor that is preproessed to have normalized value and | |
dimension [output_size[0], output_size[1], 3] | |
labels: a dictionary of tensors used for training. The following | |
describes {key: value} pairs in the dictionary. | |
source_ids: Source image id. Default value -1 if the source id is | |
empty in the groundtruth annotation. | |
image_info: a 2D `Tensor` that encodes the information of the image | |
and the applied preprocessing. It is in the format of | |
[[original_height, original_width], [scaled_height, scaled_width], | |
anchor_boxes: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, 4] representing anchor boxes at each | |
level. | |
""" | |
# Gets original image and its size. | |
image = data['image'] | |
image_shape = tf.shape(image)[0:2] | |
# Normalizes image with mean and std pixel values. | |
image = input_utils.normalize_image(image) | |
# Resizes and crops image. | |
image, image_info = input_utils.resize_and_crop_image( | |
image, | |
self._output_size, | |
padded_size=input_utils.compute_padded_size( | |
self._output_size, 2 ** self._max_level), | |
aug_scale_min=1.0, | |
aug_scale_max=1.0) | |
image_height, image_width, _ = image.get_shape().as_list() | |
# If bfloat16 is used, casts input image to tf.bfloat16. | |
if self._use_bfloat16: | |
image = tf.cast(image, dtype=tf.bfloat16) | |
# Compute Anchor boxes. | |
_ = anchor.Anchor(self._min_level, self._max_level, self._num_scales, | |
self._aspect_ratios, self._anchor_size, | |
(image_height, image_width)) | |
labels = { | |
'image_info': image_info, | |
} | |
if self._mode == ModeKeys.PREDICT_WITH_GT: | |
# Converts boxes from normalized coordinates to pixel coordinates. | |
boxes = box_utils.denormalize_boxes( | |
data['groundtruth_boxes'], image_shape) | |
groundtruths = { | |
'source_id': data['source_id'], | |
'height': data['height'], | |
'width': data['width'], | |
'num_detections': tf.shape(data['groundtruth_classes']), | |
'boxes': boxes, | |
'classes': data['groundtruth_classes'], | |
'areas': data['groundtruth_area'], | |
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), | |
} | |
groundtruths['source_id'] = dataloader_utils.process_source_id( | |
groundtruths['source_id']) | |
groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( | |
groundtruths, self._max_num_instances) | |
# TODO(yeqing): Remove the `groundtrtuh` layer key (no longer needed). | |
labels['groundtruths'] = groundtruths | |
inputs = { | |
'image': image, | |
'image_info': image_info, | |
} | |
return inputs, labels | |