Spaces:
Sleeping
Sleeping
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Feature Pyramid Networks. | |
Feature Pyramid Networks were proposed in: | |
[1] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, | |
, and Serge Belongie | |
Feature Pyramid Networks for Object Detection. CVPR 2017. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import functools | |
import tensorflow as tf, tf_keras | |
from official.legacy.detection.modeling.architecture import nn_ops | |
from official.legacy.detection.ops import spatial_transform_ops | |
class Fpn(object): | |
"""Feature pyramid networks.""" | |
def __init__(self, | |
min_level=3, | |
max_level=7, | |
fpn_feat_dims=256, | |
use_separable_conv=False, | |
activation='relu', | |
use_batch_norm=True, | |
norm_activation=nn_ops.norm_activation_builder( | |
activation='relu')): | |
"""FPN initialization function. | |
Args: | |
min_level: `int` minimum level in FPN output feature maps. | |
max_level: `int` maximum level in FPN output feature maps. | |
fpn_feat_dims: `int` number of filters in FPN layers. | |
use_separable_conv: `bool`, if True use separable convolution for | |
convolution in FPN layers. | |
activation: the activation function. | |
use_batch_norm: 'bool', indicating whether batchnorm layers are added. | |
norm_activation: an operation that includes a normalization layer | |
followed by an optional activation layer. | |
""" | |
self._min_level = min_level | |
self._max_level = max_level | |
self._fpn_feat_dims = fpn_feat_dims | |
if use_separable_conv: | |
self._conv2d_op = functools.partial( | |
tf_keras.layers.SeparableConv2D, depth_multiplier=1) | |
else: | |
self._conv2d_op = tf_keras.layers.Conv2D | |
if activation == 'relu': | |
self._activation_op = tf.nn.relu | |
elif activation == 'swish': | |
self._activation_op = tf.nn.swish | |
else: | |
raise ValueError('Unsupported activation `{}`.'.format(activation)) | |
self._use_batch_norm = use_batch_norm | |
self._norm_activation = norm_activation | |
self._norm_activations = {} | |
self._lateral_conv2d_op = {} | |
self._post_hoc_conv2d_op = {} | |
self._coarse_conv2d_op = {} | |
for level in range(self._min_level, self._max_level + 1): | |
if self._use_batch_norm: | |
self._norm_activations[level] = norm_activation( | |
use_activation=False, name='p%d-bn' % level) | |
self._lateral_conv2d_op[level] = self._conv2d_op( | |
filters=self._fpn_feat_dims, | |
kernel_size=(1, 1), | |
padding='same', | |
name='l%d' % level) | |
self._post_hoc_conv2d_op[level] = self._conv2d_op( | |
filters=self._fpn_feat_dims, | |
strides=(1, 1), | |
kernel_size=(3, 3), | |
padding='same', | |
name='post_hoc_d%d' % level) | |
self._coarse_conv2d_op[level] = self._conv2d_op( | |
filters=self._fpn_feat_dims, | |
strides=(2, 2), | |
kernel_size=(3, 3), | |
padding='same', | |
name='p%d' % level) | |
def __call__(self, multilevel_features, is_training=None): | |
"""Returns the FPN features for a given multilevel features. | |
Args: | |
multilevel_features: a `dict` containing `int` keys for continuous feature | |
levels, e.g., [2, 3, 4, 5]. The values are corresponding features with | |
shape [batch_size, height_l, width_l, num_filters]. | |
is_training: `bool` if True, the model is in training mode. | |
Returns: | |
a `dict` containing `int` keys for continuous feature levels | |
[min_level, min_level + 1, ..., max_level]. The values are corresponding | |
FPN features with shape [batch_size, height_l, width_l, fpn_feat_dims]. | |
""" | |
input_levels = list(multilevel_features.keys()) | |
if min(input_levels) > self._min_level: | |
raise ValueError( | |
'The minimum backbone level %d should be '%(min(input_levels)) + | |
'less or equal to FPN minimum level %d.:'%(self._min_level)) | |
backbone_max_level = min(max(input_levels), self._max_level) | |
with tf.name_scope('fpn'): | |
# Adds lateral connections. | |
feats_lateral = {} | |
for level in range(self._min_level, backbone_max_level + 1): | |
feats_lateral[level] = self._lateral_conv2d_op[level]( | |
multilevel_features[level]) | |
# Adds top-down path. | |
feats = {backbone_max_level: feats_lateral[backbone_max_level]} | |
for level in range(backbone_max_level - 1, self._min_level - 1, -1): | |
feats[level] = spatial_transform_ops.nearest_upsampling( | |
feats[level + 1], 2) + feats_lateral[level] | |
# Adds post-hoc 3x3 convolution kernel. | |
for level in range(self._min_level, backbone_max_level + 1): | |
feats[level] = self._post_hoc_conv2d_op[level](feats[level]) | |
# Adds coarser FPN levels introduced for RetinaNet. | |
for level in range(backbone_max_level + 1, self._max_level + 1): | |
feats_in = feats[level - 1] | |
if level > backbone_max_level + 1: | |
feats_in = self._activation_op(feats_in) | |
feats[level] = self._coarse_conv2d_op[level](feats_in) | |
if self._use_batch_norm: | |
# Adds batch_norm layer. | |
for level in range(self._min_level, self._max_level + 1): | |
feats[level] = self._norm_activations[level]( | |
feats[level], is_training=is_training) | |
return feats | |