Spaces:
Sleeping
Sleeping
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Losses used for detection models.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from absl import logging | |
import tensorflow as tf, tf_keras | |
def focal_loss(logits, targets, alpha, gamma, normalizer): | |
"""Compute the focal loss between `logits` and the golden `target` values. | |
Focal loss = -(1-pt)^gamma * log(pt) | |
where pt is the probability of being classified to the true class. | |
Args: | |
logits: A float32 tensor of size | |
[batch, height_in, width_in, num_predictions]. | |
targets: A float32 tensor of size | |
[batch, height_in, width_in, num_predictions]. | |
alpha: A float32 scalar multiplying alpha to the loss from positive examples | |
and (1-alpha) to the loss from negative examples. | |
gamma: A float32 scalar modulating loss from hard and easy examples. | |
normalizer: A float32 scalar normalizes the total loss from all examples. | |
Returns: | |
loss: A float32 Tensor of size [batch, height_in, width_in, num_predictions] | |
representing normalized loss on the prediction map. | |
""" | |
with tf.name_scope('focal_loss'): | |
positive_label_mask = tf.math.equal(targets, 1.0) | |
cross_entropy = ( | |
tf.nn.sigmoid_cross_entropy_with_logits(labels=targets, logits=logits)) | |
# Below are comments/derivations for computing modulator. | |
# For brevity, let x = logits, z = targets, r = gamma, and p_t = sigmod(x) | |
# for positive samples and 1 - sigmoid(x) for negative examples. | |
# | |
# The modulator, defined as (1 - P_t)^r, is a critical part in focal loss | |
# computation. For r > 0, it puts more weights on hard examples, and less | |
# weights on easier ones. However if it is directly computed as (1 - P_t)^r, | |
# its back-propagation is not stable when r < 1. The implementation here | |
# resolves the issue. | |
# | |
# For positive samples (labels being 1), | |
# (1 - p_t)^r | |
# = (1 - sigmoid(x))^r | |
# = (1 - (1 / (1 + exp(-x))))^r | |
# = (exp(-x) / (1 + exp(-x)))^r | |
# = exp(log((exp(-x) / (1 + exp(-x)))^r)) | |
# = exp(r * log(exp(-x)) - r * log(1 + exp(-x))) | |
# = exp(- r * x - r * log(1 + exp(-x))) | |
# | |
# For negative samples (labels being 0), | |
# (1 - p_t)^r | |
# = (sigmoid(x))^r | |
# = (1 / (1 + exp(-x)))^r | |
# = exp(log((1 / (1 + exp(-x)))^r)) | |
# = exp(-r * log(1 + exp(-x))) | |
# | |
# Therefore one unified form for positive (z = 1) and negative (z = 0) | |
# samples is: | |
# (1 - p_t)^r = exp(-r * z * x - r * log(1 + exp(-x))). | |
neg_logits = -1.0 * logits | |
modulator = tf.math.exp(gamma * targets * neg_logits - | |
gamma * tf.math.log1p(tf.math.exp(neg_logits))) | |
loss = modulator * cross_entropy | |
weighted_loss = tf.where(positive_label_mask, alpha * loss, | |
(1.0 - alpha) * loss) | |
weighted_loss /= normalizer | |
return weighted_loss | |
class RpnScoreLoss(object): | |
"""Region Proposal Network score loss function.""" | |
def __init__(self, params): | |
self._rpn_batch_size_per_im = params.rpn_batch_size_per_im | |
self._binary_crossentropy = tf_keras.losses.BinaryCrossentropy( | |
reduction=tf_keras.losses.Reduction.SUM, from_logits=True) | |
def __call__(self, score_outputs, labels): | |
"""Computes total RPN detection loss. | |
Computes total RPN detection loss including box and score from all levels. | |
Args: | |
score_outputs: an OrderDict with keys representing levels and values | |
representing scores in [batch_size, height, width, num_anchors]. | |
labels: the dictionary that returned from dataloader that includes | |
groundturth targets. | |
Returns: | |
rpn_score_loss: a scalar tensor representing total score loss. | |
""" | |
with tf.name_scope('rpn_loss'): | |
levels = sorted(score_outputs.keys()) | |
score_losses = [] | |
for level in levels: | |
score_losses.append( | |
self._rpn_score_loss( | |
score_outputs[level], | |
labels[level], | |
normalizer=tf.cast( | |
tf.shape(score_outputs[level])[0] * | |
self._rpn_batch_size_per_im, dtype=tf.float32))) | |
# Sums per level losses to total loss. | |
return tf.math.add_n(score_losses) | |
def _rpn_score_loss(self, score_outputs, score_targets, normalizer=1.0): | |
"""Computes score loss.""" | |
# score_targets has three values: | |
# (1) score_targets[i]=1, the anchor is a positive sample. | |
# (2) score_targets[i]=0, negative. | |
# (3) score_targets[i]=-1, the anchor is don't care (ignore). | |
with tf.name_scope('rpn_score_loss'): | |
mask = tf.math.logical_or(tf.math.equal(score_targets, 1), | |
tf.math.equal(score_targets, 0)) | |
score_targets = tf.math.maximum(score_targets, | |
tf.zeros_like(score_targets)) | |
score_targets = tf.expand_dims(score_targets, axis=-1) | |
score_outputs = tf.expand_dims(score_outputs, axis=-1) | |
score_loss = self._binary_crossentropy( | |
score_targets, score_outputs, sample_weight=mask) | |
score_loss /= normalizer | |
return score_loss | |
class RpnBoxLoss(object): | |
"""Region Proposal Network box regression loss function.""" | |
def __init__(self, params): | |
logging.info('RpnBoxLoss huber_loss_delta %s', params.huber_loss_delta) | |
# The delta is typically around the mean value of regression target. | |
# for instances, the regression targets of 512x512 input with 6 anchors on | |
# P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2]. | |
self._huber_loss = tf_keras.losses.Huber( | |
delta=params.huber_loss_delta, reduction=tf_keras.losses.Reduction.SUM) | |
def __call__(self, box_outputs, labels): | |
"""Computes total RPN detection loss. | |
Computes total RPN detection loss including box and score from all levels. | |
Args: | |
box_outputs: an OrderDict with keys representing levels and values | |
representing box regression targets in | |
[batch_size, height, width, num_anchors * 4]. | |
labels: the dictionary that returned from dataloader that includes | |
groundturth targets. | |
Returns: | |
rpn_box_loss: a scalar tensor representing total box regression loss. | |
""" | |
with tf.name_scope('rpn_loss'): | |
levels = sorted(box_outputs.keys()) | |
box_losses = [] | |
for level in levels: | |
box_losses.append(self._rpn_box_loss(box_outputs[level], labels[level])) | |
# Sum per level losses to total loss. | |
return tf.add_n(box_losses) | |
def _rpn_box_loss(self, box_outputs, box_targets, normalizer=1.0): | |
"""Computes box regression loss.""" | |
with tf.name_scope('rpn_box_loss'): | |
mask = tf.cast(tf.not_equal(box_targets, 0.0), dtype=tf.float32) | |
box_targets = tf.expand_dims(box_targets, axis=-1) | |
box_outputs = tf.expand_dims(box_outputs, axis=-1) | |
box_loss = self._huber_loss(box_targets, box_outputs, sample_weight=mask) | |
# The loss is normalized by the sum of non-zero weights and additional | |
# normalizer provided by the function caller. Using + 0.01 here to avoid | |
# division by zero. | |
box_loss /= normalizer * (tf.reduce_sum(mask) + 0.01) | |
return box_loss | |
class OlnRpnCenterLoss(object): | |
"""Object Localization Network RPN centerness regression loss function.""" | |
def __init__(self): | |
self._l1_loss = tf_keras.losses.MeanAbsoluteError( | |
reduction=tf_keras.losses.Reduction.SUM) | |
def __call__(self, center_outputs, labels): | |
"""Computes total RPN centerness regression loss. | |
Computes total RPN centerness score regression loss from all levels. | |
Args: | |
center_outputs: an OrderDict with keys representing levels and values | |
representing anchor centerness regression targets in | |
[batch_size, height, width, num_anchors * 4]. | |
labels: the dictionary that returned from dataloader that includes | |
groundturth targets. | |
Returns: | |
rpn_center_loss: a scalar tensor representing total centerness regression | |
loss. | |
""" | |
with tf.name_scope('rpn_loss'): | |
# Normalizer. | |
levels = sorted(center_outputs.keys()) | |
num_valid = 0 | |
# 0<pos<1, neg=0, ign=-1 | |
for level in levels: | |
num_valid += tf.reduce_sum(tf.cast( | |
tf.greater(labels[level], -1.0), tf.float32)) # in and out of box | |
num_valid += 1e-12 | |
# Centerness loss over multi levels. | |
center_losses = [] | |
for level in levels: | |
center_losses.append( | |
self._rpn_center_l1_loss( | |
center_outputs[level], labels[level], | |
normalizer=num_valid)) | |
# Sum per level losses to total loss. | |
return tf.add_n(center_losses) | |
def _rpn_center_l1_loss(self, center_outputs, center_targets, | |
normalizer=1.0): | |
"""Computes centerness regression loss.""" | |
# for instances, the regression targets of 512x512 input with 6 anchors on | |
# P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2]. | |
with tf.name_scope('rpn_center_loss'): | |
# mask = tf.greater(center_targets, 0.0) # inside box only. | |
mask = tf.greater(center_targets, -1.0) # in and out of box. | |
center_targets = tf.maximum(center_targets, tf.zeros_like(center_targets)) | |
center_outputs = tf.sigmoid(center_outputs) | |
center_targets = tf.expand_dims(center_targets, -1) | |
center_outputs = tf.expand_dims(center_outputs, -1) | |
mask = tf.cast(mask, dtype=tf.float32) | |
center_loss = self._l1_loss(center_targets, center_outputs, | |
sample_weight=mask) | |
center_loss /= normalizer | |
return center_loss | |
class OlnRpnIoULoss(object): | |
"""Object Localization Network RPN box-lrtb regression iou loss function.""" | |
def __call__(self, box_outputs, labels, center_targets): | |
"""Computes total RPN detection loss. | |
Computes total RPN box regression loss from all levels. | |
Args: | |
box_outputs: an OrderDict with keys representing levels and values | |
representing box regression targets in | |
[batch_size, height, width, num_anchors * 4]. | |
last channel: (left, right, top, bottom). | |
labels: the dictionary that returned from dataloader that includes | |
groundturth targets (left, right, top, bottom). | |
center_targets: valid_target mask. | |
Returns: | |
rpn_iou_loss: a scalar tensor representing total box regression loss. | |
""" | |
with tf.name_scope('rpn_loss'): | |
# Normalizer. | |
levels = sorted(box_outputs.keys()) | |
normalizer = 0. | |
for level in levels: | |
# center_targets pos>0, neg=0, ign=-1. | |
mask_ = tf.cast(tf.logical_and( | |
tf.greater(center_targets[level][..., 0], 0.0), | |
tf.greater(tf.reduce_min(labels[level], -1), 0.0)), tf.float32) | |
normalizer += tf.reduce_sum(mask_) | |
normalizer += 1e-8 | |
# iou_loss over multi levels. | |
iou_losses = [] | |
for level in levels: | |
iou_losses.append( | |
self._rpn_iou_loss( | |
box_outputs[level], labels[level], | |
center_weight=center_targets[level][..., 0], | |
normalizer=normalizer)) | |
# Sum per level losses to total loss. | |
return tf.add_n(iou_losses) | |
def _rpn_iou_loss(self, box_outputs, box_targets, | |
center_weight=None, normalizer=1.0): | |
"""Computes box regression loss.""" | |
# for instances, the regression targets of 512x512 input with 6 anchors on | |
# P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2]. | |
with tf.name_scope('rpn_iou_loss'): | |
mask = tf.logical_and( | |
tf.greater(center_weight, 0.0), | |
tf.greater(tf.reduce_min(box_targets, -1), 0.0)) | |
pred_left = box_outputs[..., 0] | |
pred_right = box_outputs[..., 1] | |
pred_top = box_outputs[..., 2] | |
pred_bottom = box_outputs[..., 3] | |
gt_left = box_targets[..., 0] | |
gt_right = box_targets[..., 1] | |
gt_top = box_targets[..., 2] | |
gt_bottom = box_targets[..., 3] | |
inter_width = (tf.minimum(pred_left, gt_left) + | |
tf.minimum(pred_right, gt_right)) | |
inter_height = (tf.minimum(pred_top, gt_top) + | |
tf.minimum(pred_bottom, gt_bottom)) | |
inter_area = inter_width * inter_height | |
union_area = ((pred_left + pred_right) * (pred_top + pred_bottom) + | |
(gt_left + gt_right) * (gt_top + gt_bottom) - | |
inter_area) | |
iou = inter_area / (union_area + 1e-8) | |
mask_ = tf.cast(mask, tf.float32) | |
iou = tf.clip_by_value(iou, clip_value_min=1e-8, clip_value_max=1.0) | |
neg_log_iou = -tf.math.log(iou) | |
iou_loss = tf.reduce_sum(neg_log_iou * mask_) | |
iou_loss /= normalizer | |
return iou_loss | |
class FastrcnnClassLoss(object): | |
"""Fast R-CNN classification loss function.""" | |
def __init__(self): | |
self._categorical_crossentropy = tf_keras.losses.CategoricalCrossentropy( | |
reduction=tf_keras.losses.Reduction.SUM, from_logits=True) | |
def __call__(self, class_outputs, class_targets): | |
"""Computes the class loss (Fast-RCNN branch) of Mask-RCNN. | |
This function implements the classification loss of the Fast-RCNN. | |
The classification loss is softmax on all RoIs. | |
Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py # pylint: disable=line-too-long | |
Args: | |
class_outputs: a float tensor representing the class prediction for each box | |
with a shape of [batch_size, num_boxes, num_classes]. | |
class_targets: a float tensor representing the class label for each box | |
with a shape of [batch_size, num_boxes]. | |
Returns: | |
a scalar tensor representing total class loss. | |
""" | |
with tf.name_scope('fast_rcnn_loss'): | |
batch_size, num_boxes, num_classes = class_outputs.get_shape().as_list() | |
class_targets = tf.cast(class_targets, dtype=tf.int32) | |
class_targets_one_hot = tf.one_hot(class_targets, num_classes) | |
return self._fast_rcnn_class_loss(class_outputs, class_targets_one_hot, | |
normalizer=batch_size * num_boxes / 2.0) | |
def _fast_rcnn_class_loss(self, class_outputs, class_targets_one_hot, | |
normalizer): | |
"""Computes classification loss.""" | |
with tf.name_scope('fast_rcnn_class_loss'): | |
class_loss = self._categorical_crossentropy(class_targets_one_hot, | |
class_outputs) | |
class_loss /= normalizer | |
return class_loss | |
class FastrcnnBoxLoss(object): | |
"""Fast R-CNN box regression loss function.""" | |
def __init__(self, params): | |
logging.info('FastrcnnBoxLoss huber_loss_delta %s', params.huber_loss_delta) | |
# The delta is typically around the mean value of regression target. | |
# for instances, the regression targets of 512x512 input with 6 anchors on | |
# P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2]. | |
self._huber_loss = tf_keras.losses.Huber( | |
delta=params.huber_loss_delta, reduction=tf_keras.losses.Reduction.SUM) | |
def __call__(self, box_outputs, class_targets, box_targets): | |
"""Computes the box loss (Fast-RCNN branch) of Mask-RCNN. | |
This function implements the box regression loss of the Fast-RCNN. As the | |
`box_outputs` produces `num_classes` boxes for each RoI, the reference model | |
expands `box_targets` to match the shape of `box_outputs` and selects only | |
the target that the RoI has a maximum overlap. (Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/roi_data/fast_rcnn.py) # pylint: disable=line-too-long | |
Instead, this function selects the `box_outputs` by the `class_targets` so | |
that it doesn't expand `box_targets`. | |
The box loss is smooth L1-loss on only positive samples of RoIs. | |
Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py # pylint: disable=line-too-long | |
Args: | |
box_outputs: a float tensor representing the box prediction for each box | |
with a shape of [batch_size, num_boxes, num_classes * 4]. | |
class_targets: a float tensor representing the class label for each box | |
with a shape of [batch_size, num_boxes]. | |
box_targets: a float tensor representing the box label for each box | |
with a shape of [batch_size, num_boxes, 4]. | |
Returns: | |
box_loss: a scalar tensor representing total box regression loss. | |
""" | |
with tf.name_scope('fast_rcnn_loss'): | |
class_targets = tf.cast(class_targets, dtype=tf.int32) | |
# Selects the box from `box_outputs` based on `class_targets`, with which | |
# the box has the maximum overlap. | |
(batch_size, num_rois, | |
num_class_specific_boxes) = box_outputs.get_shape().as_list() | |
num_classes = num_class_specific_boxes // 4 | |
box_outputs = tf.reshape(box_outputs, | |
[batch_size, num_rois, num_classes, 4]) | |
box_indices = tf.reshape( | |
class_targets + tf.tile( | |
tf.expand_dims( | |
tf.range(batch_size) * num_rois * num_classes, 1), | |
[1, num_rois]) + tf.tile( | |
tf.expand_dims(tf.range(num_rois) * num_classes, 0), | |
[batch_size, 1]), [-1]) | |
box_outputs = tf.matmul( | |
tf.one_hot( | |
box_indices, | |
batch_size * num_rois * num_classes, | |
dtype=box_outputs.dtype), tf.reshape(box_outputs, [-1, 4])) | |
box_outputs = tf.reshape(box_outputs, [batch_size, -1, 4]) | |
return self._fast_rcnn_box_loss(box_outputs, box_targets, class_targets) | |
def _fast_rcnn_box_loss(self, box_outputs, box_targets, class_targets, | |
normalizer=1.0): | |
"""Computes box regression loss.""" | |
with tf.name_scope('fast_rcnn_box_loss'): | |
mask = tf.tile(tf.expand_dims(tf.greater(class_targets, 0), axis=2), | |
[1, 1, 4]) | |
mask = tf.cast(mask, dtype=tf.float32) | |
box_targets = tf.expand_dims(box_targets, axis=-1) | |
box_outputs = tf.expand_dims(box_outputs, axis=-1) | |
box_loss = self._huber_loss(box_targets, box_outputs, sample_weight=mask) | |
# The loss is normalized by the number of ones in mask, | |
# additianal normalizer provided by the user and using 0.01 here to avoid | |
# division by 0. | |
box_loss /= normalizer * (tf.reduce_sum(mask) + 0.01) | |
return box_loss | |
class OlnBoxScoreLoss(object): | |
"""Object Localization Network Box-Iou scoring function.""" | |
def __init__(self, params): | |
self._ignore_threshold = params.ignore_threshold | |
self._l1_loss = tf_keras.losses.MeanAbsoluteError( | |
reduction=tf_keras.losses.Reduction.SUM) | |
def __call__(self, score_outputs, score_targets): | |
"""Computes the class loss (Fast-RCNN branch) of Mask-RCNN. | |
This function implements the classification loss of the Fast-RCNN. | |
The classification loss is softmax on all RoIs. | |
Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py # pylint: disable=line-too-long | |
Args: | |
score_outputs: a float tensor representing the class prediction for each box | |
with a shape of [batch_size, num_boxes, num_classes]. | |
score_targets: a float tensor representing the class label for each box | |
with a shape of [batch_size, num_boxes]. | |
Returns: | |
a scalar tensor representing total score loss. | |
""" | |
with tf.name_scope('fast_rcnn_loss'): | |
score_outputs = tf.squeeze(score_outputs, -1) | |
mask = tf.greater(score_targets, self._ignore_threshold) | |
num_valid = tf.reduce_sum(tf.cast(mask, tf.float32)) | |
score_targets = tf.maximum(score_targets, tf.zeros_like(score_targets)) | |
score_outputs = tf.sigmoid(score_outputs) | |
score_targets = tf.expand_dims(score_targets, -1) | |
score_outputs = tf.expand_dims(score_outputs, -1) | |
mask = tf.cast(mask, dtype=tf.float32) | |
score_loss = self._l1_loss(score_targets, score_outputs, | |
sample_weight=mask) | |
score_loss /= (num_valid + 1e-10) | |
return score_loss | |
class MaskrcnnLoss(object): | |
"""Mask R-CNN instance segmentation mask loss function.""" | |
def __init__(self): | |
self._binary_crossentropy = tf_keras.losses.BinaryCrossentropy( | |
reduction=tf_keras.losses.Reduction.SUM, from_logits=True) | |
def __call__(self, mask_outputs, mask_targets, select_class_targets): | |
"""Computes the mask loss of Mask-RCNN. | |
This function implements the mask loss of Mask-RCNN. As the `mask_outputs` | |
produces `num_classes` masks for each RoI, the reference model expands | |
`mask_targets` to match the shape of `mask_outputs` and selects only the | |
target that the RoI has a maximum overlap. (Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/roi_data/mask_rcnn.py) # pylint: disable=line-too-long | |
Instead, this implementation selects the `mask_outputs` by the `class_targets` | |
so that it doesn't expand `mask_targets`. Note that the selection logic is | |
done in the post-processing of mask_rcnn_fn in mask_rcnn_architecture.py. | |
Args: | |
mask_outputs: a float tensor representing the prediction for each mask, | |
with a shape of | |
[batch_size, num_masks, mask_height, mask_width]. | |
mask_targets: a float tensor representing the binary mask of ground truth | |
labels for each mask with a shape of | |
[batch_size, num_masks, mask_height, mask_width]. | |
select_class_targets: a tensor with a shape of [batch_size, num_masks], | |
representing the foreground mask targets. | |
Returns: | |
mask_loss: a float tensor representing total mask loss. | |
""" | |
with tf.name_scope('mask_rcnn_loss'): | |
(batch_size, num_masks, mask_height, | |
mask_width) = mask_outputs.get_shape().as_list() | |
weights = tf.tile( | |
tf.reshape(tf.greater(select_class_targets, 0), | |
[batch_size, num_masks, 1, 1]), | |
[1, 1, mask_height, mask_width]) | |
weights = tf.cast(weights, dtype=tf.float32) | |
mask_targets = tf.expand_dims(mask_targets, axis=-1) | |
mask_outputs = tf.expand_dims(mask_outputs, axis=-1) | |
mask_loss = self._binary_crossentropy(mask_targets, mask_outputs, | |
sample_weight=weights) | |
# The loss is normalized by the number of 1's in weights and | |
# + 0.01 is used to avoid division by zero. | |
return mask_loss / (tf.reduce_sum(weights) + 0.01) | |
class RetinanetClassLoss(object): | |
"""RetinaNet class loss.""" | |
def __init__(self, params, num_classes): | |
self._num_classes = num_classes | |
self._focal_loss_alpha = params.focal_loss_alpha | |
self._focal_loss_gamma = params.focal_loss_gamma | |
def __call__(self, cls_outputs, labels, num_positives): | |
"""Computes total detection loss. | |
Computes total detection loss including box and class loss from all levels. | |
Args: | |
cls_outputs: an OrderDict with keys representing levels and values | |
representing logits in [batch_size, height, width, | |
num_anchors * num_classes]. | |
labels: the dictionary that returned from dataloader that includes | |
class groundturth targets. | |
num_positives: number of positive examples in the minibatch. | |
Returns: | |
an integar tensor representing total class loss. | |
""" | |
# Sums all positives in a batch for normalization and avoids zero | |
# num_positives_sum, which would lead to inf loss during training | |
num_positives_sum = tf.reduce_sum(input_tensor=num_positives) + 1.0 | |
cls_losses = [] | |
for level in cls_outputs.keys(): | |
cls_losses.append(self.class_loss( | |
cls_outputs[level], labels[level], num_positives_sum)) | |
# Sums per level losses to total loss. | |
return tf.add_n(cls_losses) | |
def class_loss(self, cls_outputs, cls_targets, num_positives, | |
ignore_label=-2): | |
"""Computes RetinaNet classification loss.""" | |
# Onehot encoding for classification labels. | |
cls_targets_one_hot = tf.one_hot(cls_targets, self._num_classes) | |
bs, height, width, _, _ = cls_targets_one_hot.get_shape().as_list() | |
cls_targets_one_hot = tf.reshape(cls_targets_one_hot, | |
[bs, height, width, -1]) | |
loss = focal_loss(tf.cast(cls_outputs, dtype=tf.float32), | |
tf.cast(cls_targets_one_hot, dtype=tf.float32), | |
self._focal_loss_alpha, | |
self._focal_loss_gamma, | |
num_positives) | |
ignore_loss = tf.where( | |
tf.equal(cls_targets, ignore_label), | |
tf.zeros_like(cls_targets, dtype=tf.float32), | |
tf.ones_like(cls_targets, dtype=tf.float32), | |
) | |
ignore_loss = tf.expand_dims(ignore_loss, -1) | |
ignore_loss = tf.tile(ignore_loss, [1, 1, 1, 1, self._num_classes]) | |
ignore_loss = tf.reshape(ignore_loss, tf.shape(input=loss)) | |
return tf.reduce_sum(input_tensor=ignore_loss * loss) | |
class RetinanetBoxLoss(object): | |
"""RetinaNet box loss.""" | |
def __init__(self, params): | |
self._huber_loss = tf_keras.losses.Huber( | |
delta=params.huber_loss_delta, reduction=tf_keras.losses.Reduction.SUM) | |
def __call__(self, box_outputs, labels, num_positives): | |
"""Computes box detection loss. | |
Computes total detection loss including box and class loss from all levels. | |
Args: | |
box_outputs: an OrderDict with keys representing levels and values | |
representing box regression targets in [batch_size, height, width, | |
num_anchors * 4]. | |
labels: the dictionary that returned from dataloader that includes | |
box groundturth targets. | |
num_positives: number of positive examples in the minibatch. | |
Returns: | |
an integer tensor representing total box regression loss. | |
""" | |
# Sums all positives in a batch for normalization and avoids zero | |
# num_positives_sum, which would lead to inf loss during training | |
num_positives_sum = tf.reduce_sum(input_tensor=num_positives) + 1.0 | |
box_losses = [] | |
for level in box_outputs.keys(): | |
box_targets_l = labels[level] | |
box_losses.append( | |
self.box_loss(box_outputs[level], box_targets_l, num_positives_sum)) | |
# Sums per level losses to total loss. | |
return tf.add_n(box_losses) | |
def box_loss(self, box_outputs, box_targets, num_positives): | |
"""Computes RetinaNet box regression loss.""" | |
# The delta is typically around the mean value of regression target. | |
# for instances, the regression targets of 512x512 input with 6 anchors on | |
# P3-P7 pyramid is about [0.1, 0.1, 0.2, 0.2]. | |
normalizer = num_positives * 4.0 | |
mask = tf.cast(tf.not_equal(box_targets, 0.0), dtype=tf.float32) | |
box_targets = tf.expand_dims(box_targets, axis=-1) | |
box_outputs = tf.expand_dims(box_outputs, axis=-1) | |
box_loss = self._huber_loss(box_targets, box_outputs, sample_weight=mask) | |
box_loss /= normalizer | |
return box_loss | |
class ShapemaskMseLoss(object): | |
"""ShapeMask mask Mean Squared Error loss function wrapper.""" | |
def __call__(self, probs, labels, valid_mask): | |
"""Compute instance segmentation loss. | |
Args: | |
probs: A Tensor of shape [batch_size * num_points, height, width, | |
num_classes]. The logits are not necessarily between 0 and 1. | |
labels: A float32/float16 Tensor of shape [batch_size, num_instances, | |
mask_size, mask_size], where mask_size = | |
mask_crop_size * gt_upsample_scale for fine mask, or mask_crop_size | |
for coarse masks and shape priors. | |
valid_mask: a binary mask indicating valid training masks. | |
Returns: | |
loss: an float tensor representing total mask classification loss. | |
""" | |
with tf.name_scope('shapemask_prior_loss'): | |
batch_size, num_instances = valid_mask.get_shape().as_list()[:2] | |
diff = (tf.cast(labels, dtype=tf.float32) - | |
tf.cast(probs, dtype=tf.float32)) | |
diff *= tf.cast( | |
tf.reshape(valid_mask, [batch_size, num_instances, 1, 1]), | |
tf.float32) | |
# Adding 0.001 in the denominator to avoid division by zero. | |
loss = tf.nn.l2_loss(diff) / (tf.reduce_sum(labels) + 0.001) | |
return loss | |
class ShapemaskLoss(object): | |
"""ShapeMask mask loss function wrapper.""" | |
def __init__(self): | |
self._binary_crossentropy = tf_keras.losses.BinaryCrossentropy( | |
reduction=tf_keras.losses.Reduction.SUM, from_logits=True) | |
def __call__(self, logits, labels, valid_mask): | |
"""ShapeMask mask cross entropy loss function wrapper. | |
Args: | |
logits: A Tensor of shape [batch_size * num_instances, height, width, | |
num_classes]. The logits are not necessarily between 0 and 1. | |
labels: A float16/float32 Tensor of shape [batch_size, num_instances, | |
mask_size, mask_size], where mask_size = | |
mask_crop_size * gt_upsample_scale for fine mask, or mask_crop_size | |
for coarse masks and shape priors. | |
valid_mask: a binary mask of shape [batch_size, num_instances] | |
indicating valid training masks. | |
Returns: | |
loss: an float tensor representing total mask classification loss. | |
""" | |
with tf.name_scope('shapemask_loss'): | |
batch_size, num_instances = valid_mask.get_shape().as_list()[:2] | |
labels = tf.cast(labels, tf.float32) | |
logits = tf.cast(logits, tf.float32) | |
loss = self._binary_crossentropy(labels, logits) | |
loss *= tf.cast(tf.reshape( | |
valid_mask, [batch_size, num_instances, 1, 1]), loss.dtype) | |
# Adding 0.001 in the denominator to avoid division by zero. | |
loss = tf.reduce_sum(loss) / (tf.reduce_sum(labels) + 0.001) | |
return loss | |