Spaces:
Sleeping
Sleeping
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Utility functions for input processing.""" | |
import math | |
import tensorflow as tf, tf_keras | |
from official.legacy.detection.utils import box_utils | |
from official.vision.utils.object_detection import preprocessor | |
def pad_to_fixed_size(input_tensor, size, constant_values=0): | |
"""Pads data to a fixed length at the first dimension. | |
Args: | |
input_tensor: `Tensor` with any dimension. | |
size: `int` number for the first dimension of output Tensor. | |
constant_values: `int` value assigned to the paddings. | |
Returns: | |
`Tensor` with the first dimension padded to `size`. | |
""" | |
input_shape = input_tensor.get_shape().as_list() | |
padding_shape = [] | |
# Computes the padding length on the first dimension. | |
padding_length = tf.maximum(0, size - tf.shape(input_tensor)[0]) | |
assert_length = tf.Assert( | |
tf.greater_equal(padding_length, 0), [padding_length]) | |
with tf.control_dependencies([assert_length]): | |
padding_shape.append(padding_length) | |
# Copies shapes of the rest of input shape dimensions. | |
for i in range(1, len(input_shape)): | |
padding_shape.append(tf.shape(input=input_tensor)[i]) | |
# Pads input tensor to the fixed first dimension. | |
paddings = tf.cast(constant_values * tf.ones(padding_shape), | |
input_tensor.dtype) | |
padded_tensor = tf.concat([input_tensor, paddings], axis=0) | |
output_shape = input_shape | |
output_shape[0] = size | |
padded_tensor.set_shape(output_shape) | |
return padded_tensor | |
def normalize_image(image, | |
offset=(0.485, 0.456, 0.406), | |
scale=(0.229, 0.224, 0.225)): | |
"""Normalizes the image to zero mean and unit variance.""" | |
image = tf.image.convert_image_dtype(image, dtype=tf.float32) | |
offset = tf.constant(offset) | |
offset = tf.expand_dims(offset, axis=0) | |
offset = tf.expand_dims(offset, axis=0) | |
image -= offset | |
scale = tf.constant(scale) | |
scale = tf.expand_dims(scale, axis=0) | |
scale = tf.expand_dims(scale, axis=0) | |
image /= scale | |
return image | |
def compute_padded_size(desired_size, stride): | |
"""Compute the padded size given the desired size and the stride. | |
The padded size will be the smallest rectangle, such that each dimension is | |
the smallest multiple of the stride which is larger than the desired | |
dimension. For example, if desired_size = (100, 200) and stride = 32, | |
the output padded_size = (128, 224). | |
Args: | |
desired_size: a `Tensor` or `int` list/tuple of two elements representing | |
[height, width] of the target output image size. | |
stride: an integer, the stride of the backbone network. | |
Returns: | |
padded_size: a `Tensor` or `int` list/tuple of two elements representing | |
[height, width] of the padded output image size. | |
""" | |
if isinstance(desired_size, list) or isinstance(desired_size, tuple): | |
padded_size = [ | |
int(math.ceil(d * 1.0 / stride) * stride) for d in desired_size | |
] | |
else: | |
padded_size = tf.cast( | |
tf.math.ceil(tf.cast(desired_size, dtype=tf.float32) / stride) * stride, | |
tf.int32) | |
return padded_size | |
def resize_and_crop_image(image, | |
desired_size, | |
padded_size, | |
aug_scale_min=1.0, | |
aug_scale_max=1.0, | |
seed=1, | |
method=tf.image.ResizeMethod.BILINEAR): | |
"""Resizes the input image to output size. | |
Resize and pad images given the desired output size of the image and | |
stride size. | |
Here are the preprocessing steps. | |
1. For a given image, keep its aspect ratio and rescale the image to make it | |
the largest rectangle to be bounded by the rectangle specified by the | |
`desired_size`. | |
2. Pad the rescaled image to the padded_size. | |
Args: | |
image: a `Tensor` of shape [height, width, 3] representing an image. | |
desired_size: a `Tensor` or `int` list/tuple of two elements representing | |
[height, width] of the desired actual output image size. | |
padded_size: a `Tensor` or `int` list/tuple of two elements representing | |
[height, width] of the padded output image size. Padding will be applied | |
after scaling the image to the desired_size. | |
aug_scale_min: a `float` with range between [0, 1.0] representing minimum | |
random scale applied to desired_size for training scale jittering. | |
aug_scale_max: a `float` with range between [1.0, inf] representing maximum | |
random scale applied to desired_size for training scale jittering. | |
seed: seed for random scale jittering. | |
method: function to resize input image to scaled image. | |
Returns: | |
output_image: `Tensor` of shape [height, width, 3] where [height, width] | |
equals to `output_size`. | |
image_info: a 2D `Tensor` that encodes the information of the image and the | |
applied preprocessing. It is in the format of | |
[[original_height, original_width], [desired_height, desired_width], | |
[y_scale, x_scale], [y_offset, x_offset]], where [desired_height, | |
desireed_width] is the actual scaled image size, and [y_scale, x_scale] is | |
the scaling factory, which is the ratio of | |
scaled dimension / original dimension. | |
""" | |
with tf.name_scope('resize_and_crop_image'): | |
image_size = tf.cast(tf.shape(input=image)[0:2], tf.float32) | |
random_jittering = (aug_scale_min != 1.0 or aug_scale_max != 1.0) | |
if random_jittering: | |
random_scale = tf.random.uniform([], | |
aug_scale_min, | |
aug_scale_max, | |
seed=seed) | |
scaled_size = tf.round(random_scale * desired_size) | |
else: | |
scaled_size = desired_size | |
scale = tf.minimum(scaled_size[0] / image_size[0], | |
scaled_size[1] / image_size[1]) | |
scaled_size = tf.round(image_size * scale) | |
# Computes 2D image_scale. | |
image_scale = scaled_size / image_size | |
# Selects non-zero random offset (x, y) if scaled image is larger than | |
# desired_size. | |
if random_jittering: | |
max_offset = scaled_size - desired_size | |
max_offset = tf.where( | |
tf.less(max_offset, 0), tf.zeros_like(max_offset), max_offset) | |
offset = max_offset * tf.random.uniform([ | |
2, | |
], 0, 1, seed=seed) | |
offset = tf.cast(offset, tf.int32) | |
else: | |
offset = tf.zeros((2,), tf.int32) | |
scaled_image = tf.image.resize( | |
image, tf.cast(scaled_size, tf.int32), method=method) | |
if random_jittering: | |
scaled_image = scaled_image[offset[0]:offset[0] + desired_size[0], | |
offset[1]:offset[1] + desired_size[1], :] | |
output_image = tf.image.pad_to_bounding_box(scaled_image, 0, 0, | |
padded_size[0], padded_size[1]) | |
image_info = tf.stack([ | |
image_size, | |
tf.cast(desired_size, dtype=tf.float32), image_scale, | |
tf.cast(offset, tf.float32) | |
]) | |
return output_image, image_info | |
def resize_and_crop_image_v2(image, | |
short_side, | |
long_side, | |
padded_size, | |
aug_scale_min=1.0, | |
aug_scale_max=1.0, | |
seed=1, | |
method=tf.image.ResizeMethod.BILINEAR): | |
"""Resizes the input image to output size (Faster R-CNN style). | |
Resize and pad images given the specified short / long side length and the | |
stride size. | |
Here are the preprocessing steps. | |
1. For a given image, keep its aspect ratio and first try to rescale the short | |
side of the original image to `short_side`. | |
2. If the scaled image after 1 has a long side that exceeds `long_side`, keep | |
the aspect ratio and rescal the long side of the image to `long_side`. | |
2. Pad the rescaled image to the padded_size. | |
Args: | |
image: a `Tensor` of shape [height, width, 3] representing an image. | |
short_side: a scalar `Tensor` or `int` representing the desired short side | |
to be rescaled to. | |
long_side: a scalar `Tensor` or `int` representing the desired long side to | |
be rescaled to. | |
padded_size: a `Tensor` or `int` list/tuple of two elements representing | |
[height, width] of the padded output image size. Padding will be applied | |
after scaling the image to the desired_size. | |
aug_scale_min: a `float` with range between [0, 1.0] representing minimum | |
random scale applied to desired_size for training scale jittering. | |
aug_scale_max: a `float` with range between [1.0, inf] representing maximum | |
random scale applied to desired_size for training scale jittering. | |
seed: seed for random scale jittering. | |
method: function to resize input image to scaled image. | |
Returns: | |
output_image: `Tensor` of shape [height, width, 3] where [height, width] | |
equals to `output_size`. | |
image_info: a 2D `Tensor` that encodes the information of the image and the | |
applied preprocessing. It is in the format of | |
[[original_height, original_width], [desired_height, desired_width], | |
[y_scale, x_scale], [y_offset, x_offset]], where [desired_height, | |
desired_width] is the actual scaled image size, and [y_scale, x_scale] is | |
the scaling factor, which is the ratio of | |
scaled dimension / original dimension. | |
""" | |
with tf.name_scope('resize_and_crop_image_v2'): | |
image_size = tf.cast(tf.shape(image)[0:2], tf.float32) | |
scale_using_short_side = ( | |
short_side / tf.math.minimum(image_size[0], image_size[1])) | |
scale_using_long_side = ( | |
long_side / tf.math.maximum(image_size[0], image_size[1])) | |
scaled_size = tf.math.round(image_size * scale_using_short_side) | |
scaled_size = tf.where( | |
tf.math.greater( | |
tf.math.maximum(scaled_size[0], scaled_size[1]), long_side), | |
tf.math.round(image_size * scale_using_long_side), scaled_size) | |
desired_size = scaled_size | |
random_jittering = (aug_scale_min != 1.0 or aug_scale_max != 1.0) | |
if random_jittering: | |
random_scale = tf.random.uniform([], | |
aug_scale_min, | |
aug_scale_max, | |
seed=seed) | |
scaled_size = tf.math.round(random_scale * scaled_size) | |
# Computes 2D image_scale. | |
image_scale = scaled_size / image_size | |
# Selects non-zero random offset (x, y) if scaled image is larger than | |
# desired_size. | |
if random_jittering: | |
max_offset = scaled_size - desired_size | |
max_offset = tf.where( | |
tf.math.less(max_offset, 0), tf.zeros_like(max_offset), max_offset) | |
offset = max_offset * tf.random.uniform([ | |
2, | |
], 0, 1, seed=seed) | |
offset = tf.cast(offset, tf.int32) | |
else: | |
offset = tf.zeros((2,), tf.int32) | |
scaled_image = tf.image.resize( | |
image, tf.cast(scaled_size, tf.int32), method=method) | |
if random_jittering: | |
scaled_image = scaled_image[offset[0]:offset[0] + desired_size[0], | |
offset[1]:offset[1] + desired_size[1], :] | |
output_image = tf.image.pad_to_bounding_box(scaled_image, 0, 0, | |
padded_size[0], padded_size[1]) | |
image_info = tf.stack([ | |
image_size, | |
tf.cast(desired_size, dtype=tf.float32), image_scale, | |
tf.cast(offset, tf.float32) | |
]) | |
return output_image, image_info | |
def resize_and_crop_boxes(boxes, image_scale, output_size, offset): | |
"""Resizes boxes to output size with scale and offset. | |
Args: | |
boxes: `Tensor` of shape [N, 4] representing ground truth boxes. | |
image_scale: 2D float `Tensor` representing scale factors that apply to | |
[height, width] of input image. | |
output_size: 2D `Tensor` or `int` representing [height, width] of target | |
output image size. | |
offset: 2D `Tensor` representing top-left corner [y0, x0] to crop scaled | |
boxes. | |
Returns: | |
boxes: `Tensor` of shape [N, 4] representing the scaled boxes. | |
""" | |
# Adjusts box coordinates based on image_scale and offset. | |
boxes *= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) | |
boxes -= tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) | |
# Clips the boxes. | |
boxes = box_utils.clip_boxes(boxes, output_size) | |
return boxes | |
def resize_and_crop_masks(masks, image_scale, output_size, offset): | |
"""Resizes boxes to output size with scale and offset. | |
Args: | |
masks: `Tensor` of shape [N, H, W, 1] representing ground truth masks. | |
image_scale: 2D float `Tensor` representing scale factors that apply to | |
[height, width] of input image. | |
output_size: 2D `Tensor` or `int` representing [height, width] of target | |
output image size. | |
offset: 2D `Tensor` representing top-left corner [y0, x0] to crop scaled | |
boxes. | |
Returns: | |
masks: `Tensor` of shape [N, H, W, 1] representing the scaled masks. | |
""" | |
mask_size = tf.shape(input=masks)[1:3] | |
scaled_size = tf.cast(image_scale * tf.cast(mask_size, image_scale.dtype), | |
tf.int32) | |
scaled_masks = tf.image.resize( | |
masks, scaled_size, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) | |
offset = tf.cast(offset, tf.int32) | |
scaled_masks = scaled_masks[:, offset[0]:offset[0] + output_size[0], | |
offset[1]:offset[1] + output_size[1], :] | |
output_masks = tf.image.pad_to_bounding_box(scaled_masks, 0, 0, | |
output_size[0], output_size[1]) | |
return output_masks | |
def random_horizontal_flip(image, boxes=None, masks=None): | |
"""Randomly flips input image and bounding boxes.""" | |
return preprocessor.random_horizontal_flip(image, boxes, masks) | |