deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataclasses for optimizer configs."""
from typing import List, Optional
import dataclasses
from official.modeling.hyperparams import base_config
@dataclasses.dataclass
class BaseOptimizerConfig(base_config.Config):
"""Base optimizer config.
Attributes:
clipnorm: float >= 0 or None. If not None, Gradients will be clipped when
their L2 norm exceeds this value.
clipvalue: float >= 0 or None. If not None, Gradients will be clipped when
their absolute value exceeds this value.
global_clipnorm: float >= 0 or None. If not None, gradient of all weights is
clipped so that their global norm is no higher than this value
"""
clipnorm: Optional[float] = None
clipvalue: Optional[float] = None
global_clipnorm: Optional[float] = None
@dataclasses.dataclass
class SGDConfig(BaseOptimizerConfig):
"""Configuration for SGD optimizer.
The attributes for this class matches the arguments of tf_keras.optimizer.SGD.
Attributes:
name: name of the optimizer.
decay: decay rate for SGD optimizer.
nesterov: nesterov for SGD optimizer.
momentum: momentum for SGD optimizer.
"""
name: str = "SGD"
decay: float = 0.0
nesterov: bool = False
momentum: float = 0.0
# TODO(b/216129465): Merge this config with SGDConfig after the experimental
# optimizer graduates.
@dataclasses.dataclass
class SGDExperimentalConfig(BaseOptimizerConfig):
"""Configuration for SGD optimizer.
The attributes for this class matches the arguments of
`tf_keras.optimizer.experimental.SGD`.
Attributes:
name: name of the optimizer.
nesterov: nesterov for SGD optimizer.
momentum: momentum for SGD optimizer.
jit_compile: if True, jit compile will be used.
"""
name: str = "SGD"
nesterov: bool = False
momentum: float = 0.0
jit_compile: bool = False
@dataclasses.dataclass
class RMSPropConfig(BaseOptimizerConfig):
"""Configuration for RMSProp optimizer.
The attributes for this class matches the arguments of
tf_keras.optimizers.RMSprop.
Attributes:
name: name of the optimizer.
rho: discounting factor for RMSprop optimizer.
momentum: momentum for RMSprop optimizer.
epsilon: epsilon value for RMSprop optimizer, help with numerical stability.
centered: Whether to normalize gradients or not.
"""
name: str = "RMSprop"
rho: float = 0.9
momentum: float = 0.0
epsilon: float = 1e-7
centered: bool = False
@dataclasses.dataclass
class AdagradConfig(BaseOptimizerConfig):
"""Configuration for Adagrad optimizer.
The attributes of this class match the arguments of
tf_keras.optimizer.Adagrad.
Attributes:
name: name of the optimizer.
initial_accumulator_value: A floating point value. Starting value for the
accumulators, must be non-negative.
epsilon: A small floating point value to avoid zero denominator.
"""
name: str = "Adagrad"
initial_accumulator_value: float = 0.1
epsilon: float = 1e-07
@dataclasses.dataclass
class AdamConfig(BaseOptimizerConfig):
"""Configuration for Adam optimizer.
The attributes for this class matches the arguments of
tf_keras.optimizer.Adam.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in Adam optimizer.
amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond".
"""
name: str = "Adam"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-07
amsgrad: bool = False
@dataclasses.dataclass
class AdamExperimentalConfig(BaseOptimizerConfig):
"""Configuration for experimental Adam optimizer.
The attributes for this class matches the arguments of
`tf_keras.optimizer.experimental.Adam`.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in Adam optimizer.
amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond".
jit_compile: if True, jit compile will be used.
"""
name: str = "Adam"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-07
amsgrad: bool = False
jit_compile: bool = False
@dataclasses.dataclass
class AdamWeightDecayConfig(BaseOptimizerConfig):
"""Configuration for Adam optimizer with weight decay.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in the optimizer.
amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond".
weight_decay_rate: float. Weight decay rate. Default to 0.
include_in_weight_decay: list[str], or None. List of weight names to include
in weight decay.
exclude_from_weight_decay: list[str], or None. List of weight names to not
include in weight decay.
gradient_clip_norm: A positive float. Clips the gradients to this maximum
L2-norm. Default to 1.0.
"""
name: str = "AdamWeightDecay"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-07
amsgrad: bool = False
weight_decay_rate: float = 0.0
include_in_weight_decay: Optional[List[str]] = None
exclude_from_weight_decay: Optional[List[str]] = None
gradient_clip_norm: float = 1.0
@dataclasses.dataclass
class AdamWeightDecayExperimentalConfig(BaseOptimizerConfig):
"""Configuration for Adam optimizer with weight decay.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in the optimizer.
amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond".
weight_decay: float. Weight decay rate. Default to 0.
global_clipnorm: A positive float. Clips the gradients to this maximum
L2-norm. Default to 1.0.
jit_compile: if True, jit compile will be used.
"""
name: str = "AdamWeightDecayExperimental"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-07
amsgrad: bool = False
weight_decay: float = 0.0
global_clipnorm: float = 1.0
jit_compile: bool = False
@dataclasses.dataclass
class LAMBConfig(BaseOptimizerConfig):
"""Configuration for LAMB optimizer.
The attributes for this class matches the arguments of LAMB optimizer.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in LAMB optimizer.
weight_decay_rate: float. Weight decay rate. Default to 0.
exclude_from_weight_decay: List of regex patterns of variables excluded from
weight decay. Variables whose name contain a substring matching the
pattern will be excluded.
exclude_from_layer_adaptation: List of regex patterns of variables excluded
from layer adaptation. Variables whose name contain a substring matching
the pattern will be excluded.
"""
name: str = "LAMB"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-6
weight_decay_rate: float = 0.0
exclude_from_weight_decay: Optional[List[str]] = None
exclude_from_layer_adaptation: Optional[List[str]] = None
@dataclasses.dataclass
class EMAConfig(BaseOptimizerConfig):
"""Exponential moving average optimizer config.
Attributes:
name: 'str', name of the optimizer.
trainable_weights_only: 'bool', if True, only model trainable weights will
be updated. Otherwise, all model weights will be updated. This mainly
affects batch normalization parameters.
average_decay: 'float', average decay value.
start_step: 'int', start step to apply moving average.
dynamic_decay: 'bool', whether to apply dynamic decay or not.
"""
name: str = "ExponentialMovingAverage"
trainable_weights_only: bool = True
average_decay: float = 0.99
start_step: int = 0
dynamic_decay: bool = True
@dataclasses.dataclass
class LARSConfig(BaseOptimizerConfig):
"""Layer-wise adaptive rate scaling config.
Attributes:
name: 'str', name of the optimizer.
momentum: `float` hyperparameter >= 0 that accelerates gradient descent in
the relevant direction and dampens oscillations. Defaults to 0.9.
eeta: `float` LARS coefficient as used in the paper. Default set to LARS
coefficient from the paper. (eeta / weight_decay) determines the highest
scaling factor in LARS..
weight_decay_rate: `float` for weight decay.
nesterov: 'boolean' for whether to use nesterov momentum.
classic_momentum: `boolean` for whether to use classic (or popular)
momentum. The learning rate is applied during momentum update in classic
momentum, but after momentum for popular momentum.
exclude_from_weight_decay: A list of `string` for variable screening, if any
of the string appears in a variable's name, the variable will be excluded
for computing weight decay. For example, one could specify the list like
['batch_normalization', 'bias'] to exclude BN and bias from weight decay.
exclude_from_layer_adaptation: Similar to exclude_from_weight_decay, but for
layer adaptation. If it is None, it will be defaulted the same as
exclude_from_weight_decay.
"""
name: str = "LARS"
momentum: float = 0.9
eeta: float = 0.001
weight_decay_rate: float = 0.0
nesterov: bool = False
classic_momentum: bool = True
exclude_from_weight_decay: Optional[List[str]] = None
exclude_from_layer_adaptation: Optional[List[str]] = None
@dataclasses.dataclass
class SLIDEConfig(BaseOptimizerConfig):
"""Configuration for SLIDE optimizer.
Details coming soon.
"""
name: str = "SLIDE"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-6
weight_decay_rate: float = 0.0
weight_decay_type: str = "inner"
exclude_from_weight_decay: Optional[List[str]] = None
exclude_from_layer_adaptation: Optional[List[str]] = None
include_in_sparse_layer_adaptation: Optional[List[str]] = None
sparse_layer_learning_rate: float = 0.1
do_gradient_rescaling: bool = True
norm_type: str = "layer"
ratio_clip_norm: float = 1e5
@dataclasses.dataclass
class AdafactorConfig(BaseOptimizerConfig):
"""Configuration for Adafactor optimizer.
The attributes for this class matches the arguments of the Adafactor
implementation.
"""
name: str = "Adafactor"
factored: bool = True
multiply_by_parameter_scale: bool = True
beta1: Optional[float] = None
decay_rate: float = 0.8
step_offset: int = 0
clipping_threshold: float = 1.0
min_dim_size_to_factor: int = 128
epsilon1: float = 1e-30
epsilon2: float = 1e-3
weight_decay: Optional[float] = None
include_in_weight_decay: Optional[str] = None
@dataclasses.dataclass
class AdafactorKerasConfig(BaseOptimizerConfig):
"""Configuration for AdafactorKeras optimizer.
The attributes for this class matches the arguments of the Adafactor
implementation provided by keras.
Attributes:
learning_rate: Initial value for the learning rate: either a floating
point value, or a
`tf_keras.optimizers.schedules.LearningRateSchedule` instance.
Defaults to 0.001.
beta_2_decay: float, defaults to -0.8. The decay rate of `beta_2`.
epsilon_1: float, defaults to 1e-30. A small offset to keep denominator
away from 0.
epsilon_2: float, defaults to 1e-3. A small offset to avoid learning
rate becoming too small by time.
clip_threshold: float, defaults to 1.0. Clipping threshold. This is a
part of Adafactor algorithm, independent from `clipnorm`, `clipvalue`
and `global_clipnorm`.
relative_step: bool, defaults to True. If `learning_rate` is a constant
and `relative_step=True`, learning rate will be adjusted based on
current iterations. This is a default learning rate decay in
Adafactor.
"""
name: str = "Adafactor"
learning_rate: float = 0.001
beta_2_decay: float = -0.8
epsilon_1: float = 1e-30
epsilon_2: float = 1e-3
clip_threshold: float = 1.0
relative_step: bool = True