Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, Optional | |
import torch | |
from torch import nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models import PixArtTransformer2DModel | |
from diffusers.models.attention import BasicTransformerBlock | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
class PixArtControlNetAdapterBlock(nn.Module): | |
def __init__( | |
self, | |
block_index, | |
# taken from PixArtTransformer2DModel | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 72, | |
dropout: float = 0.0, | |
cross_attention_dim: Optional[int] = 1152, | |
attention_bias: bool = True, | |
activation_fn: str = "gelu-approximate", | |
num_embeds_ada_norm: Optional[int] = 1000, | |
upcast_attention: bool = False, | |
norm_type: str = "ada_norm_single", | |
norm_elementwise_affine: bool = False, | |
norm_eps: float = 1e-6, | |
attention_type: Optional[str] = "default", | |
): | |
super().__init__() | |
self.block_index = block_index | |
self.inner_dim = num_attention_heads * attention_head_dim | |
# the first block has a zero before layer | |
if self.block_index == 0: | |
self.before_proj = nn.Linear(self.inner_dim, self.inner_dim) | |
nn.init.zeros_(self.before_proj.weight) | |
nn.init.zeros_(self.before_proj.bias) | |
self.transformer_block = BasicTransformerBlock( | |
self.inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
attention_type=attention_type, | |
) | |
self.after_proj = nn.Linear(self.inner_dim, self.inner_dim) | |
nn.init.zeros_(self.after_proj.weight) | |
nn.init.zeros_(self.after_proj.bias) | |
def train(self, mode: bool = True): | |
self.transformer_block.train(mode) | |
if self.block_index == 0: | |
self.before_proj.train(mode) | |
self.after_proj.train(mode) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
controlnet_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
): | |
if self.block_index == 0: | |
controlnet_states = self.before_proj(controlnet_states) | |
controlnet_states = hidden_states + controlnet_states | |
controlnet_states_down = self.transformer_block( | |
hidden_states=controlnet_states, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=timestep, | |
added_cond_kwargs=added_cond_kwargs, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
class_labels=None, | |
) | |
controlnet_states_left = self.after_proj(controlnet_states_down) | |
return controlnet_states_left, controlnet_states_down | |
class PixArtControlNetAdapterModel(ModelMixin, ConfigMixin): | |
# N=13, as specified in the paper https://arxiv.org/html/2401.05252v1/#S4 ControlNet-Transformer | |
def __init__(self, num_layers=13) -> None: | |
super().__init__() | |
self.num_layers = num_layers | |
self.controlnet_blocks = nn.ModuleList( | |
[PixArtControlNetAdapterBlock(block_index=i) for i in range(num_layers)] | |
) | |
def from_transformer(cls, transformer: PixArtTransformer2DModel): | |
control_net = PixArtControlNetAdapterModel() | |
# copied the specified number of blocks from the transformer | |
for depth in range(control_net.num_layers): | |
control_net.controlnet_blocks[depth].transformer_block.load_state_dict( | |
transformer.transformer_blocks[depth].state_dict() | |
) | |
return control_net | |
def train(self, mode: bool = True): | |
for block in self.controlnet_blocks: | |
block.train(mode) | |
class PixArtControlNetTransformerModel(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
transformer: PixArtTransformer2DModel, | |
controlnet: PixArtControlNetAdapterModel, | |
blocks_num=13, | |
init_from_transformer=False, | |
training=False, | |
): | |
super().__init__() | |
self.blocks_num = blocks_num | |
self.gradient_checkpointing = False | |
self.register_to_config(**transformer.config) | |
self.training = training | |
if init_from_transformer: | |
# copies the specified number of blocks from the transformer | |
controlnet.from_transformer(transformer, self.blocks_num) | |
self.transformer = transformer | |
self.controlnet = controlnet | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
controlnet_cond: Optional[torch.Tensor] = None, | |
added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
): | |
if self.transformer.use_additional_conditions and added_cond_kwargs is None: | |
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.") | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None and attention_mask.ndim == 2: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# 1. Input | |
batch_size = hidden_states.shape[0] | |
height, width = ( | |
hidden_states.shape[-2] // self.transformer.config.patch_size, | |
hidden_states.shape[-1] // self.transformer.config.patch_size, | |
) | |
hidden_states = self.transformer.pos_embed(hidden_states) | |
timestep, embedded_timestep = self.transformer.adaln_single( | |
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype | |
) | |
if self.transformer.caption_projection is not None: | |
encoder_hidden_states = self.transformer.caption_projection(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) | |
controlnet_states_down = None | |
if controlnet_cond is not None: | |
controlnet_states_down = self.transformer.pos_embed(controlnet_cond) | |
# 2. Blocks | |
for block_index, block in enumerate(self.transformer.transformer_blocks): | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
# rc todo: for training and gradient checkpointing | |
print("Gradient checkpointing is not supported for the controlnet transformer model, yet.") | |
exit(1) | |
hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
timestep, | |
cross_attention_kwargs, | |
None, | |
) | |
else: | |
# the control nets are only used for the blocks 1 to self.blocks_num | |
if block_index > 0 and block_index <= self.blocks_num and controlnet_states_down is not None: | |
controlnet_states_left, controlnet_states_down = self.controlnet.controlnet_blocks[ | |
block_index - 1 | |
]( | |
hidden_states=hidden_states, # used only in the first block | |
controlnet_states=controlnet_states_down, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=timestep, | |
added_cond_kwargs=added_cond_kwargs, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
hidden_states = hidden_states + controlnet_states_left | |
hidden_states = block( | |
hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
class_labels=None, | |
) | |
# 3. Output | |
shift, scale = ( | |
self.transformer.scale_shift_table[None] | |
+ embedded_timestep[:, None].to(self.transformer.scale_shift_table.device) | |
).chunk(2, dim=1) | |
hidden_states = self.transformer.norm_out(hidden_states) | |
# Modulation | |
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device) | |
hidden_states = self.transformer.proj_out(hidden_states) | |
hidden_states = hidden_states.squeeze(1) | |
# unpatchify | |
hidden_states = hidden_states.reshape( | |
shape=( | |
-1, | |
height, | |
width, | |
self.transformer.config.patch_size, | |
self.transformer.config.patch_size, | |
self.transformer.out_channels, | |
) | |
) | |
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=( | |
-1, | |
self.transformer.out_channels, | |
height * self.transformer.config.patch_size, | |
width * self.transformer.config.patch_size, | |
) | |
) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |