Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import sys | |
import unittest | |
import numpy as np | |
import pytest | |
import torch | |
from transformers import CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizerFast | |
from diffusers import ( | |
AutoencoderKLHunyuanVideo, | |
FlowMatchEulerDiscreteScheduler, | |
HunyuanVideoPipeline, | |
HunyuanVideoTransformer3DModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
floats_tensor, | |
nightly, | |
numpy_cosine_similarity_distance, | |
require_big_gpu_with_torch_cuda, | |
require_peft_backend, | |
require_torch_gpu, | |
skip_mps, | |
) | |
sys.path.append(".") | |
from utils import PeftLoraLoaderMixinTests # noqa: E402 | |
class HunyuanVideoLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): | |
pipeline_class = HunyuanVideoPipeline | |
scheduler_cls = FlowMatchEulerDiscreteScheduler | |
scheduler_classes = [FlowMatchEulerDiscreteScheduler] | |
scheduler_kwargs = {} | |
transformer_kwargs = { | |
"in_channels": 4, | |
"out_channels": 4, | |
"num_attention_heads": 2, | |
"attention_head_dim": 10, | |
"num_layers": 1, | |
"num_single_layers": 1, | |
"num_refiner_layers": 1, | |
"patch_size": 1, | |
"patch_size_t": 1, | |
"guidance_embeds": True, | |
"text_embed_dim": 16, | |
"pooled_projection_dim": 8, | |
"rope_axes_dim": (2, 4, 4), | |
} | |
transformer_cls = HunyuanVideoTransformer3DModel | |
vae_kwargs = { | |
"in_channels": 3, | |
"out_channels": 3, | |
"latent_channels": 4, | |
"down_block_types": ( | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
"HunyuanVideoDownBlock3D", | |
), | |
"up_block_types": ( | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
"HunyuanVideoUpBlock3D", | |
), | |
"block_out_channels": (8, 8, 8, 8), | |
"layers_per_block": 1, | |
"act_fn": "silu", | |
"norm_num_groups": 4, | |
"scaling_factor": 0.476986, | |
"spatial_compression_ratio": 8, | |
"temporal_compression_ratio": 4, | |
"mid_block_add_attention": True, | |
} | |
vae_cls = AutoencoderKLHunyuanVideo | |
has_two_text_encoders = True | |
tokenizer_cls, tokenizer_id, tokenizer_subfolder = ( | |
LlamaTokenizerFast, | |
"hf-internal-testing/tiny-random-hunyuanvideo", | |
"tokenizer", | |
) | |
tokenizer_2_cls, tokenizer_2_id, tokenizer_2_subfolder = ( | |
CLIPTokenizer, | |
"hf-internal-testing/tiny-random-hunyuanvideo", | |
"tokenizer_2", | |
) | |
text_encoder_cls, text_encoder_id, text_encoder_subfolder = ( | |
LlamaModel, | |
"hf-internal-testing/tiny-random-hunyuanvideo", | |
"text_encoder", | |
) | |
text_encoder_2_cls, text_encoder_2_id, text_encoder_2_subfolder = ( | |
CLIPTextModel, | |
"hf-internal-testing/tiny-random-hunyuanvideo", | |
"text_encoder_2", | |
) | |
def output_shape(self): | |
return (1, 9, 32, 32, 3) | |
def get_dummy_inputs(self, with_generator=True): | |
batch_size = 1 | |
sequence_length = 16 | |
num_channels = 4 | |
num_frames = 9 | |
num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1 | |
sizes = (4, 4) | |
generator = torch.manual_seed(0) | |
noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes) | |
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | |
pipeline_inputs = { | |
"prompt": "", | |
"num_frames": num_frames, | |
"num_inference_steps": 1, | |
"guidance_scale": 6.0, | |
"height": 32, | |
"width": 32, | |
"max_sequence_length": sequence_length, | |
"prompt_template": {"template": "{}", "crop_start": 0}, | |
"output_type": "np", | |
} | |
if with_generator: | |
pipeline_inputs.update({"generator": generator}) | |
return noise, input_ids, pipeline_inputs | |
def test_simple_inference_with_text_lora_denoiser_fused_multi(self): | |
super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3) | |
def test_simple_inference_with_text_denoiser_lora_unfused(self): | |
super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3) | |
# TODO(aryan): Fix the following test | |
def test_simple_inference_save_pretrained(self): | |
pass | |
def test_simple_inference_with_text_denoiser_block_scale(self): | |
pass | |
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): | |
pass | |
def test_modify_padding_mode(self): | |
pass | |
def test_simple_inference_with_partial_text_lora(self): | |
pass | |
def test_simple_inference_with_text_lora(self): | |
pass | |
def test_simple_inference_with_text_lora_and_scale(self): | |
pass | |
def test_simple_inference_with_text_lora_fused(self): | |
pass | |
def test_simple_inference_with_text_lora_save_load(self): | |
pass | |
class HunyuanVideoLoRAIntegrationTests(unittest.TestCase): | |
"""internal note: The integration slices were obtained on DGX. | |
torch: 2.5.1+cu124 with CUDA 12.5. Need the same setup for the | |
assertions to pass. | |
""" | |
num_inference_steps = 10 | |
seed = 0 | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
model_id = "hunyuanvideo-community/HunyuanVideo" | |
transformer = HunyuanVideoTransformer3DModel.from_pretrained( | |
model_id, subfolder="transformer", torch_dtype=torch.bfloat16 | |
) | |
self.pipeline = HunyuanVideoPipeline.from_pretrained( | |
model_id, transformer=transformer, torch_dtype=torch.float16 | |
).to("cuda") | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_original_format_cseti(self): | |
self.pipeline.load_lora_weights( | |
"Cseti/HunyuanVideo-LoRA-Arcane_Jinx-v1", weight_name="csetiarcane-nfjinx-v1-6000.safetensors" | |
) | |
self.pipeline.fuse_lora() | |
self.pipeline.unload_lora_weights() | |
self.pipeline.vae.enable_tiling() | |
prompt = "CSETIARCANE. A cat walks on the grass, realistic" | |
out = self.pipeline( | |
prompt=prompt, | |
height=320, | |
width=512, | |
num_frames=9, | |
num_inference_steps=self.num_inference_steps, | |
output_type="np", | |
generator=torch.manual_seed(self.seed), | |
).frames[0] | |
out = out.flatten() | |
out_slice = np.concatenate((out[:8], out[-8:])) | |
# fmt: off | |
expected_slice = np.array([0.1013, 0.1924, 0.0078, 0.1021, 0.1929, 0.0078, 0.1023, 0.1919, 0.7402, 0.104, 0.4482, 0.7354, 0.0925, 0.4382, 0.7275, 0.0815]) | |
# fmt: on | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice) | |
assert max_diff < 1e-3 | |