Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import torch | |
from diffusers import AutoencoderKLLTXVideo | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
torch_device, | |
) | |
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
enable_full_determinism() | |
class AutoencoderKLLTXVideo090Tests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = AutoencoderKLLTXVideo | |
main_input_name = "sample" | |
base_precision = 1e-2 | |
def get_autoencoder_kl_ltx_video_config(self): | |
return { | |
"in_channels": 3, | |
"out_channels": 3, | |
"latent_channels": 8, | |
"block_out_channels": (8, 8, 8, 8), | |
"decoder_block_out_channels": (8, 8, 8, 8), | |
"layers_per_block": (1, 1, 1, 1, 1), | |
"decoder_layers_per_block": (1, 1, 1, 1, 1), | |
"spatio_temporal_scaling": (True, True, False, False), | |
"decoder_spatio_temporal_scaling": (True, True, False, False), | |
"decoder_inject_noise": (False, False, False, False, False), | |
"upsample_residual": (False, False, False, False), | |
"upsample_factor": (1, 1, 1, 1), | |
"timestep_conditioning": False, | |
"patch_size": 1, | |
"patch_size_t": 1, | |
"encoder_causal": True, | |
"decoder_causal": False, | |
} | |
def dummy_input(self): | |
batch_size = 2 | |
num_frames = 9 | |
num_channels = 3 | |
sizes = (16, 16) | |
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
return {"sample": image} | |
def input_shape(self): | |
return (3, 9, 16, 16) | |
def output_shape(self): | |
return (3, 9, 16, 16) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = self.get_autoencoder_kl_ltx_video_config() | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_gradient_checkpointing_is_applied(self): | |
expected_set = { | |
"LTXVideoEncoder3d", | |
"LTXVideoDecoder3d", | |
"LTXVideoDownBlock3D", | |
"LTXVideoMidBlock3d", | |
"LTXVideoUpBlock3d", | |
} | |
super().test_gradient_checkpointing_is_applied(expected_set=expected_set) | |
def test_outputs_equivalence(self): | |
pass | |
def test_forward_with_norm_groups(self): | |
pass | |
class AutoencoderKLLTXVideo091Tests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = AutoencoderKLLTXVideo | |
main_input_name = "sample" | |
base_precision = 1e-2 | |
def get_autoencoder_kl_ltx_video_config(self): | |
return { | |
"in_channels": 3, | |
"out_channels": 3, | |
"latent_channels": 8, | |
"block_out_channels": (8, 8, 8, 8), | |
"decoder_block_out_channels": (16, 32, 64), | |
"layers_per_block": (1, 1, 1, 1), | |
"decoder_layers_per_block": (1, 1, 1, 1), | |
"spatio_temporal_scaling": (True, True, True, False), | |
"decoder_spatio_temporal_scaling": (True, True, True), | |
"decoder_inject_noise": (True, True, True, False), | |
"upsample_residual": (True, True, True), | |
"upsample_factor": (2, 2, 2), | |
"timestep_conditioning": True, | |
"patch_size": 1, | |
"patch_size_t": 1, | |
"encoder_causal": True, | |
"decoder_causal": False, | |
} | |
def dummy_input(self): | |
batch_size = 2 | |
num_frames = 9 | |
num_channels = 3 | |
sizes = (16, 16) | |
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
timestep = torch.tensor([0.05] * batch_size, device=torch_device) | |
return {"sample": image, "temb": timestep} | |
def input_shape(self): | |
return (3, 9, 16, 16) | |
def output_shape(self): | |
return (3, 9, 16, 16) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = self.get_autoencoder_kl_ltx_video_config() | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_gradient_checkpointing_is_applied(self): | |
expected_set = { | |
"LTXVideoEncoder3d", | |
"LTXVideoDecoder3d", | |
"LTXVideoDownBlock3D", | |
"LTXVideoMidBlock3d", | |
"LTXVideoUpBlock3d", | |
} | |
super().test_gradient_checkpointing_is_applied(expected_set=expected_set) | |
def test_outputs_equivalence(self): | |
pass | |
def test_forward_with_norm_groups(self): | |
pass | |
def test_enable_disable_tiling(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict).to(torch_device) | |
inputs_dict.update({"return_dict": False}) | |
torch.manual_seed(0) | |
output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
torch.manual_seed(0) | |
model.enable_tiling() | |
output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertLess( | |
(output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), | |
0.5, | |
"VAE tiling should not affect the inference results", | |
) | |
torch.manual_seed(0) | |
model.disable_tiling() | |
output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertEqual( | |
output_without_tiling.detach().cpu().numpy().all(), | |
output_without_tiling_2.detach().cpu().numpy().all(), | |
"Without tiling outputs should match with the outputs when tiling is manually disabled.", | |
) | |