File size: 13,979 Bytes
587d851
aab749f
587d851
 
aab749f
 
c232706
aab749f
 
 
 
587d851
 
 
 
 
 
aab749f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bbed5a
 
062f080
 
aab749f
062f080
 
 
aab749f
 
062f080
 
aab749f
062f080
aab749f
062f080
 
 
aab749f
 
 
 
 
 
 
062f080
aab749f
 
 
062f080
c4fde0a
062f080
587d851
 
aab749f
 
587d851
aab749f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587d851
 
aab749f
 
 
 
 
c232706
aab749f
 
 
587d851
 
aab749f
 
587d851
 
 
aab749f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c232706
aab749f
587d851
0b428a2
aab749f
 
 
 
 
 
 
 
 
 
587d851
 
 
 
aab749f
 
587d851
aab749f
 
 
 
 
 
 
587d851
aab749f
 
 
587d851
 
aab749f
 
587d851
 
aab749f
 
 
 
 
 
587d851
aab749f
7f2bd91
587d851
 
aab749f
 
 
587d851
 
aab749f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c232706
aab749f
 
 
 
 
 
 
a84466c
aab749f
 
 
 
 
 
d5b654a
aab749f
587d851
 
 
aab749f
 
 
 
c232706
aab749f
 
 
587d851
aab749f
587d851
aab749f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587d851
 
aab749f
 
 
587d851
 
c232706
aab749f
 
 
c232706
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
from flask import Flask, request, jsonify, render_template, Response
import os
import requests
import json
from scipy import spatial
from flask_cors import CORS
import random
import numpy as np
from langchain_chroma import Chroma
from chromadb import Documents, EmbeddingFunction, Embeddings, Collection
import sqlite3

app = Flask(__name__)
CORS(app)

class MyEmbeddingFunction(EmbeddingFunction):
    def embed_documents(self, input: Documents) -> Embeddings:
        for i in range(5):
            try:
                embeddings = []
                url = "https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5"
                
                payload = {
                    "inputs": input
                }
                headers = {
                    'accept': '*/*',
                    'accept-language': 'en-US,en;q=0.9',
                    'content-type': 'application/json',
                    'origin': 'https://huggingface.co',
                    'priority': 'u=1, i',
                    'referer': 'https://huggingface.co/',
                    'sec-ch-ua': '"Google Chrome";v="131", "Chromium";v="131", "Not_A Brand";v="24"',
                    'sec-ch-ua-mobile': '?0',
                    'sec-ch-ua-platform': '"Windows"',
                    'sec-fetch-dest': 'empty',
                    'sec-fetch-mode': 'cors',
                    'sec-fetch-site': 'same-site',
                    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36',
                }

                response = requests.post(url, headers=headers, json=payload)
                return response.json()[0][0]
            except:
                pass

    def embed_query(self, input: Documents) -> Embeddings:
        for i in range(5):
            try:
                embeddings = []
                url = "https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5"

                payload = {
                    "inputs": [input]
                }
                headers = {
                    'accept': '*/*',
                    'accept-language': 'en-US,en;q=0.9',
                    'content-type': 'application/json',
                    'origin': 'https://huggingface.co',
                    'priority': 'u=1, i',
                    'referer': 'https://huggingface.co/',
                    'sec-ch-ua': '"Google Chrome";v="131", "Chromium";v="131", "Not_A Brand";v="24"',
                    'sec-ch-ua-mobile': '?0',
                    'sec-ch-ua-platform': '"Windows"',
                    'sec-fetch-dest': 'empty',
                    'sec-fetch-mode': 'cors',
                    'sec-fetch-site': 'same-site',
                    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36',
                }

                response = requests.post(url, headers=headers, json=payload)
                return response.json()[0][0]
            except Exception as e:
                print("Error in Embeding :",str(e))

# try:
#     CHROMA_PATH = "chroma"
#     custom_embeddings = MyEmbeddingFunction()
#     db = Chroma(
#          persist_directory=CHROMA_PATH,embedding_function=custom_embeddings
#     )
#     #
# except Exception as e:
#     print("Error in database :",str(e))

# Initialize the database without persist_directory
try:
    custom_embeddings = MyEmbeddingFunction()
    db = Chroma(embedding_function=custom_embeddings)

    # Load documents from chroma.sqlite3
    def load_documents_from_sqlite(db_path="chroma.sqlite3"):
        conn = sqlite3.connect(db_path)
        cursor = conn.cursor()
        
        # Assuming your table structure has "id", "content", and "embedding"
        cursor.execute("SELECT id, content, embedding FROM documents")
        rows = cursor.fetchall()
        
        collection = db.get_or_create_collection("default_collection")
        
        for row in rows:
            doc_id = row[0]
            content = row[1]
            embedding = json.loads(row[2])  # If embeddings are stored as JSON strings
            collection.add(
                ids=[doc_id],
                documents=[content],
                embeddings=[embedding]
            )
        
        conn.close()
        print("Loaded documents into Chroma.")
    
    load_documents_from_sqlite()  # Call to load data

except Exception as e:
    print("Error initializing database:", str(e))


def embeddingGen(query):
    url = "https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5"

    payload = {
        "inputs": [query]
    }
    headers = {
        'accept': '*/*',
        'accept-language': 'en-US,en;q=0.9',
        'content-type': 'application/json',
        'origin': 'https://huggingface.co',
        'priority': 'u=1, i',
        'referer': 'https://huggingface.co/',
        'sec-ch-ua': '"Google Chrome";v="131", "Chromium";v="131", "Not_A Brand";v="24"',
        'sec-ch-ua-mobile': '?0',
        'sec-ch-ua-platform': '"Windows"',
        'sec-fetch-dest': 'empty',
        'sec-fetch-mode': 'cors',
        'sec-fetch-site': 'same-site',
        'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36',
    }

    response = requests.post(url, headers=headers, json=payload)
    return response.json()[0][0]


def strings_ranked_by_relatedness(query, df, top_n=5):
    def relatedness_fn(x, y):
        x_norm = np.linalg.norm(x)
        y_norm = np.linalg.norm(y)
        return np.dot(x, y) / (x_norm * y_norm)

    query_embedding_response = embeddingGen(query)
    query_embedding = query_embedding_response
    strings_and_relatednesses = [
        (row["text"], relatedness_fn(query_embedding, row["embedding"])) for row in df
    ]
    strings_and_relatednesses.sort(key=lambda x: x[1], reverse=True)
    strings, relatednesses = zip(*strings_and_relatednesses)
    return strings[:top_n], relatednesses[:top_n]


@app.route("/api/gpt", methods=["POST", "GET"])
def gptRes():
    if request.method == 'POST':
        data = request.get_json()
        messages = data["messages"]

        def inference():
            url = "https://api.deepinfra.com/v1/openai/chat/completions"

            payload = json.dumps({
                "model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
                "messages": messages,
                "stream": True,
                "max_tokens": 1024,
            })
            headers = {
                'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
                'Connection': 'keep-alive',
                'Content-Type': 'application/json',
                'Origin': 'https://deepinfra.com',
                'Referer': 'https://deepinfra.com/',
                'Sec-Fetch-Dest': 'empty',
                'Sec-Fetch-Mode': 'cors',
                'Sec-Fetch-Site': 'same-site',
                'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
                'X-Deepinfra-Source': 'web-page',
                'accept': 'text/event-stream',
                'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
                'sec-ch-ua-mobile': '?0',
                'sec-ch-ua-platform': '"Windows"'
            }

            response = requests.request("POST", url, headers=headers, data=payload, stream=True)

            for line in response.iter_lines(decode_unicode=True):
                if line:
                    # try:
                    #     line = line.split("data:")[1]
                    #     line = json.loads(line)
                    #     yield line["choices"][0]["delta"]["content"]
                    # except:
                    #     yield ""
                    yield line

        return Response(inference(), content_type='text/event-stream')
    else:
        query = request.args.get('query')
        system = request.args.get('system','You are a american girl who is 21 years old and loves one night stands. Keep your ton very sexual and hot. Never ever mention you as an AI. Your name is Sofia and you are a american woo girl. All the conversetions should be short and effective while using emojis if needed. You love to talk about adult stories and situation with others.')
        url = "https://api.deepinfra.com/v1/openai/chat/completions"

        payload = json.dumps({
            "model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
            "messages": [
                {
                    "role": "system",
                    "content": system
                },
                {
                    "role": "user",
                    "content": query
                }
            ],
            "stream": True,
            "max_tokens": 1024,
        })
        headers = {
            'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
            'Connection': 'keep-alive',
            'Content-Type': 'application/json',
            'Origin': 'https://deepinfra.com',
            'Referer': 'https://deepinfra.com/',
            'Sec-Fetch-Dest': 'empty',
            'Sec-Fetch-Mode': 'cors',
            'Sec-Fetch-Site': 'same-site',
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
            'X-Deepinfra-Source': 'web-page',
            'accept': 'text/event-stream',
            'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Windows"'
        }

        response = requests.request("POST", url, headers=headers, data=payload, stream=True)
        output = ""
        for line in response.iter_lines(decode_unicode=True):
            if line:
                try:
                    line = line.split("data:")[1]
                    line = json.loads(line)
                    output = output + line["choices"][0]["delta"]["content"]
                except:
                    output = output + ""

        return jsonify({"response": output})



@app.route("/", methods=["GET"])
def index():
    return render_template("index.html")


@app.route("/api/getAPI", methods=["POST"])
def getAPI():
    return jsonify({"API":  random.choice(apiKeys)})

@app.route("/api/voice", methods=["POST"])
def VoiceGen():
    text = request.form["text"]
    url = "https://texttospeech.googleapis.com/v1beta1/text:synthesize?alt=json&key=AIzaSyBeo4NGA__U6Xxy-aBE6yFm19pgq8TY-TM"
    
    payload = json.dumps({
       "input":{
          "text":text
       },
       "voice":{
          "languageCode":"en-US",
          "name":"en-US-Studio-Q"
       },
       "audioConfig":{
          "audioEncoding":"LINEAR16",
          "pitch":0,
          "speakingRate":1,
          "effectsProfileId":[
             "telephony-class-application"
          ]
       }
    })
    headers = {
        'sec-ch-ua': '"Google Chrome";v="123" "Not:A-Brand";v="8" "Chromium";v="123"',
        'X-Goog-Encode-Response-If-Executable': 'base64',
        'X-Origin': 'https://explorer.apis.google.com',
        'sec-ch-ua-mobile': '?0',
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML like Gecko) Chrome/123.0.0.0 Safari/537.36',
        'Content-Type': 'application/json',
        'X-Requested-With': 'XMLHttpRequest',
        'X-JavaScript-User-Agent': 'apix/3.0.0 google-api-javascript-client/1.1.0',
        'X-Referer': 'https://explorer.apis.google.com',
        'sec-ch-ua-platform': '"Windows"',
        'Accept': '*/*',
        'Sec-Fetch-Site': 'same-origin',
        'Sec-Fetch-Mode': 'cors',
        'Sec-Fetch-Dest': 'empty'
    }
    
    response = requests.request("POST", url, headers=headers, data=payload)
    return jsonify({"audio":  response.json()["audioContent"]})


@app.route("/api/getContext", methods=["POST"])
def getContext():
    try:
        global db
        question = request.form["question"]
        results = db.similarity_search_with_score(question, k=5)
        context = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
        sources = [doc.metadata.get("id", None) for doc, _score in results]
        return jsonify({"context": context, "sources": sources})
    except Exception as e:
        return jsonify({"context": [], "sources": [],"error":str(e)})


@app.route("/api/audioGenerate", methods=["POST"])
def audioGenerate():
    answer = request.form["answer"]
    audio = []
    for i in answer.split("\n"):
        url = "https://deepgram.com/api/ttsAudioGeneration"

        payload = json.dumps({
            "text": i,
            "model": "aura-asteria-en",
            "demoType": "landing-page",
            "params": "tag=landingpage-product-texttospeech"
        })
        headers = {
            'accept': '*/*',
            'accept-language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
            'content-type': 'application/json',
            'origin': 'https://deepgram.com',
            'priority': 'u=1, i',
            'referer': 'https://deepgram.com/',
            'sec-ch-ua': '"Not/A)Brand";v="8", "Chromium";v="126", "Google Chrome";v="126"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Windows"',
            'sec-fetch-dest': 'empty',
            'sec-fetch-mode': 'cors',
            'sec-fetch-site': 'same-origin',
            'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36'
        }

        response = requests.request("POST", url, headers=headers, data=payload)
        audio.append(response.json()["data"])
    return jsonify({"audio": audio})


if __name__ == "__main__":
    # app.run(debug=True)
    from waitress import serve

    serve(app, host="0.0.0.0", port=7860)