Spaces:
Runtime error
Runtime error
Commit
·
6457fca
1
Parent(s):
81dfb50
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import numpy as np
|
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
from pytorch_grad_cam import GradCAM
|
|
|
7 |
from resnet import ResNet18
|
8 |
import gradio as gr
|
9 |
|
@@ -14,6 +15,8 @@ inv_normalize = transforms.Normalize(
|
|
14 |
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
|
15 |
std=[1/0.23, 1/0.23, 1/0.23]
|
16 |
)
|
|
|
|
|
17 |
|
18 |
def inference(input_img, transparency, target_layer_number):
|
19 |
transform = transforms.ToTensor()
|
@@ -33,5 +36,5 @@ def inference(input_img, transparency, target_layer_number):
|
|
33 |
visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency)
|
34 |
return classes[prediction[0].item()], visualization
|
35 |
|
36 |
-
demo = gr.Interface(inference, [gr.Image(shape=(32, 32)), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-5, -1, value = -2, step=1, label="Which Layer?")], ["text", gr.Image(shape=(32, 32)).style(width=128, height=128)])
|
37 |
demo.launch()
|
|
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
from pytorch_grad_cam import GradCAM
|
7 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
8 |
from resnet import ResNet18
|
9 |
import gradio as gr
|
10 |
|
|
|
15 |
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
|
16 |
std=[1/0.23, 1/0.23, 1/0.23]
|
17 |
)
|
18 |
+
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
19 |
+
'dog', 'frog', 'horse', 'ship', 'truck')
|
20 |
|
21 |
def inference(input_img, transparency, target_layer_number):
|
22 |
transform = transforms.ToTensor()
|
|
|
36 |
visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency)
|
37 |
return classes[prediction[0].item()], visualization
|
38 |
|
39 |
+
demo = gr.Interface(inference, [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-5, -1, value = -2, step=1, label="Which Layer?")], ["text", gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)])
|
40 |
demo.launch()
|