Spaces:
Runtime error
Runtime error
Commit
·
e488a16
1
Parent(s):
4501c57
Update app.py
Browse files
app.py
CHANGED
@@ -25,6 +25,9 @@ def inference(input_img, transparency = 0.5, target_layer_number = -1):
|
|
25 |
input_img = input_img
|
26 |
input_img = input_img.unsqueeze(0)
|
27 |
outputs = model(input_img)
|
|
|
|
|
|
|
28 |
_, prediction = torch.max(outputs, 1)
|
29 |
target_layers = [model.layer2[target_layer_number]]
|
30 |
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
|
@@ -35,7 +38,7 @@ def inference(input_img, transparency = 0.5, target_layer_number = -1):
|
|
35 |
rgb_img = np.transpose(img, (1, 2, 0))
|
36 |
rgb_img = rgb_img.numpy()
|
37 |
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
38 |
-
return
|
39 |
|
40 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
41 |
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
|
@@ -43,7 +46,7 @@ examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
|
|
43 |
demo = gr.Interface(
|
44 |
inference,
|
45 |
inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")],
|
46 |
-
outputs = [
|
47 |
title = title,
|
48 |
description = description,
|
49 |
examples = examples,
|
|
|
25 |
input_img = input_img
|
26 |
input_img = input_img.unsqueeze(0)
|
27 |
outputs = model(input_img)
|
28 |
+
softmax = torch.nn.Softmax(dim=0)
|
29 |
+
o = softmax(outputs.flatten())
|
30 |
+
confidences = {classes[i]: float(o[i]) for i in range(10)}
|
31 |
_, prediction = torch.max(outputs, 1)
|
32 |
target_layers = [model.layer2[target_layer_number]]
|
33 |
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
|
|
|
38 |
rgb_img = np.transpose(img, (1, 2, 0))
|
39 |
rgb_img = rgb_img.numpy()
|
40 |
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
41 |
+
return confidences, visualization
|
42 |
|
43 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
44 |
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
|
|
|
46 |
demo = gr.Interface(
|
47 |
inference,
|
48 |
inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")],
|
49 |
+
outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
|
50 |
title = title,
|
51 |
description = description,
|
52 |
examples = examples,
|