Spaces:
Running
Running
File size: 9,491 Bytes
fce7679 628c58f 4b9ef91 fce7679 8147ec1 fce7679 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import json
import requests
import gradio as gr
from agno.agent import Agent
from dotenv import load_dotenv
from dataclasses import dataclass
from typing import Dict, Optional
from firecrawl import FirecrawlApp
from pydantic import BaseModel, Field
from agno.models.openai import OpenAIChat
load_dotenv()
class AQIResponse(BaseModel):
success: bool
data: Dict[str, float]
status: str
expiresAt: str
class ExtractSchema(BaseModel):
aqi: float = Field(description = "Air Quality Index")
temperature: float = Field(description = "Temperature in Degree Celsius")
humidity: float = Field(description = "Humidity Percentage")
wind_speed: float = Field(description = "")
pm25:float = Field(description = "Particulate Matter 2.5 micrometers")
pm10:float = Field(description = "Particulate Matter 10 micrometers")
co: float = Field(description = "Carbon Monoxide Level")
@dataclass
class UserInput:
city: str
state: str
country: str
medical_conditions: Optional[str]
planned_activity: str
class AQIAnalyzer:
def __init__(self, firecrawl_key : str) -> None:
self.firecrawl = FirecrawlApp(api_key = firecrawl_key)
def _format_url(self, country : str, state: str, city: str) -> str:
"""Format URLs based on location, handling cases with and without state
"""
country_clean = country.lower().replace(" ", "-")
city_clean = city.lower().replace(" ", "-")
if not state or state.lower().replace(" ","-"):
return f"https://www.aqi.in/dashboard/{country_clean}/{city_clean}"
state_clean = state.lower().replace(" ", "-")
return f"https://www.aqi.in/dashboard/{country_clean}/{state_clean}/{city_clean}"
def fetch_aqi_data(self, city: str, state: str, country: str) -> tuple[Dict[str, float], str]:
"""Fetch API data using Firecrawl"""
try:
url = self._format_url(country, state, city)
info_msg = f"Accessing URL: {url}"
resp = self.firecrawl.extract(
urls = [f"{url}/*"],
params = {
"prompt" : "Extract the current real-time AQI, temperature, humidity, wind speed, PM2.5, PM10 and CO Levels from the page. Also extract the timestamp of the data.",
"schema": ExtractSchema.model_json_schema()
}
)
aqi_response = AQIResponse(**resp)
if not aqi_response.success:
raise requests.HTTPError(f"Failed to fetch AQI Data: {aqi_response.status}")
return aqi_response.data, info_msg
except Exception as e:
error_msg = f"Error Fetching AQI Data: {str(e)}"
return {
"api": 0,
"temperature": 0,
"humidity": 0,
"wind_speed": 0,
"pm25": 0,
"pm10": 0,
"co": 0
}, error_msg
class HealthRecommendationAgent:
def __init__(self, openai_key: str) -> Agent:
self.agent = Agent(
model = OpenAIChat(
id = "gpt-4.1-nano",
name = "Health Recommendation Agent",
api_key = openai_key
)
)
def _create_prompt(self, aqi_data: Dict[str, float], user_input: UserInput) -> str:
return f"""
Based on the following air quality condition in {user_input.city}, {user_input.state}, {user_input.country}:
- Overall AQI: {aqi_data["aqi"]}
- PM2.5 Level: {aqi_data["pm25"]} µg/m³
- PM10 Level: {aqi_data["pm10"]} µg/m³
- CO Level: {aqi_data["co"]} ppb
Weather Conditions:
- Temperature: {aqi_data["temperature"]}°C
- Humidity: {aqi_data["humidity"]}%
- Wind Speed: {aqi_data["co"]} ppb
"""
def get_recommendation(self, aqi_data: Dict[str, float], user_input: UserInput) -> str:
prompt = self._create_prompt(prompt)
resp = self.agent.run(prompt)
return resp.content
def analyze_conditions(city: str, state: str, country: str, medical_condition: str, planned_activity: str, firecrawl_key: str, openai_key: str) -> tuple[str, str, str, str]:
"""Analyze condition and return AQI data, recommendation, and status messages"""
try:
# initialize the analyzer
aqi_analyzer = AQIAnalyzer(firecrawl_key=firecrawl_key)
health_agent = HealthRecommendationAgent(openai_key = openai_key)
# Create user input
user_input = UserInput(
city = city,
state = state,
country = country,
medical_conditions = medical_condition,
planned_activity = planned_activity
)
# Get AQI Data
aqi_data, info_msg = aqi_analyzer.fetch_aqi_data(
city = user_input.city,
state = user_input.state,
country = user_input.country
)
# Format AQI data for display
aqi_json = json.dumps({
"Air Quality Index (AQI): ": aqi_data["aqi"],
"PM2.5: ":f"{aqi_data['pm25']} µg/m³",
"PM10: ": f"{aqi_data['pm10']} µg/m³",
"Carbon Monoxide (CO): " : f"{aqi_data['co']} ppb",
"Temperature": f"{aqi_data['temperature']}°C",
"Humidity": f"{aqi_data['humidity']}%",
"Wind Speed": f"{aqi_data['wind_speed']} km/h"
}, indent=2)
# Get Recommendations
recommendations = health_agent.get_recommendation(aqi_data, user_input)
warning_msg = """
Note: The data shown may not match real-time values on the website.
This could be due to:
- Cached data in Firecrawl
- Rate Limiting
- Website updates not being captured
Consider refreshing or checking the website directly for real-time values
"""
return aqi_json, recommendations, info_msg, warning_msg
except Exception as e:
error_msg = f"Error Occured: {str(e)}"
return "", "Analysis Failed", error_msg, ""
def create_demo() -> gr.Blocks:
"""Create and configure the gradio interface"""
with gr.Blocks(title = "AQL Analysis and Recommendation Agent") as demo:
gr.Markdown(
"""
AQI Analysis Agent
Get personalized health recommendations based on air quality conditions.
"""
)
# API Configurations
with gr.Accordion("API Configuration", open=False):
firecrawl_key = gr.Textbox(
label="Firecrawl API Key",
type="password",
placeholder="Enter your Firecrawl API Key"
)
openai_key = gr.Textbox(
label="OpenAI API Key",
type = "password",
placeholder="Enter your OpenAI API Key"
)
# Location Details
with gr.Row():
with gr.Column():
city = gr.Textbox(label="City", placeholder="eg. Mumbai")
state = gr.Textbox(
label="State",
placeholder="Leave blank for UT or US Cities",
value = ""
)
country = gr.Textbox(label="Country", value = "India")
# Personal Details
with gr.Row():
with gr.Column():
medical_conditions = gr.Textbox(
label="Medical Conditions (optional)",
placeholder="e.g., asthma, allergies",
lines=2
)
planned_activity = gr.Textbox(
label="Planned Activity",
placeholder="e.g., morning jog for 2 hours",
lines=2
)
# Status Messages
info_box = gr.Textbox(label="ℹ️ Status", interactive=False)
warning_box = gr.Textbox(label="⚠️ Warning", interactive=False)
# Output Areas
aqi_data_json = gr.JSON(label="Current Air Quality Data")
recommendations = gr.Markdown(label="Health Recommendations")
# Analyze Button
analyze_btn = gr.Button("🔍 Analyze & Get Recommendations", variant="primary")
analyze_btn.click(
fn=analyze_conditions,
inputs=[
city,
state,
country,
medical_conditions,
planned_activity,
firecrawl_key,
openai_key
],
outputs=[aqi_data_json, recommendations, info_box, warning_box]
)
# Examples
gr.Examples(
examples=[
["Mumbai", "Maharashtra", "India", "asthma", "morning walk for 30 minutes"],
["Delhi", "", "India", "", "outdoor yoga session"],
["New York", "", "United States", "allergies", "afternoon run"],
["Kakinada", "Andhra Pradesh", "India", "none", "Tennis for 2 hours"]
],
inputs=[city, state, country, medical_conditions, planned_activity]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(share=True) |