File size: 8,695 Bytes
4300924
9cc7f92
 
 
 
 
4300924
9cc7f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import streamlit as st
from openai import OpenAI
from mem0 import Memory
import os
import json
from datetime import datetime, timedelta

# Set up the Streamlit App
st.title("AI Customer Support Agent with Memory πŸ›’")
st.caption("Chat with a customer support assistant who remembers your past interactions.")

# Set the OpenAI API key
openai_api_key = st.text_input("Enter OpenAI API Key", type="password")

if openai_api_key:
    os.environ['OPENAI_API_KEY'] = openai_api_key

    class CustomerSupportAIAgent:
        def __init__(self):
            # Initialize Mem0 with Qdrant as the vector store
            config = {
                "vector_store": {
                    "provider": "qdrant",
                    "config": {
                        "host": "localhost",
                        "port": 6333,
                    }
                },
            }
            try:
                self.memory = Memory.from_config(config)
            except Exception as e:
                st.error(f"Failed to initialize memory: {e}")
                st.stop()  # Stop execution if memory initialization fails

            self.client = OpenAI()
            self.app_id = "customer-support"

        def handle_query(self, query, user_id=None):
            try:
                # Search for relevant memories
                relevant_memories = self.memory.search(query=query, user_id=user_id)
                
                # Build context from relevant memories
                context = "Relevant past information:\n"
                if relevant_memories and "results" in relevant_memories:
                    for memory in relevant_memories["results"]:
                        if "memory" in memory:
                            context += f"- {memory['memory']}\n"

                # Generate a response using OpenAI
                full_prompt = f"{context}\nCustomer: {query}\nSupport Agent:"
                response = self.client.chat.completions.create(
                    model="gpt-4",
                    messages=[
                        {"role": "system", "content": "You are a customer support AI agent for TechGadgets.com, an online electronics store."},
                        {"role": "user", "content": full_prompt}
                    ]
                )
                answer = response.choices[0].message.content

                # Add the query and answer to memory
                self.memory.add(query, user_id=user_id, metadata={"app_id": self.app_id, "role": "user"})
                self.memory.add(answer, user_id=user_id, metadata={"app_id": self.app_id, "role": "assistant"})

                return answer
            except Exception as e:
                st.error(f"An error occurred while handling the query: {e}")
                return "Sorry, I encountered an error. Please try again later."

        def get_memories(self, user_id=None):
            try:
                # Retrieve all memories for a user
                return self.memory.get_all(user_id=user_id)
            except Exception as e:
                st.error(f"Failed to retrieve memories: {e}")
                return None

        def generate_synthetic_data(self, user_id: str) -> dict | None:
            try:
                today = datetime.now()
                order_date = (today - timedelta(days=10)).strftime("%B %d, %Y")
                expected_delivery = (today + timedelta(days=2)).strftime("%B %d, %Y")

                prompt = f"""Generate a detailed customer profile and order history for a TechGadgets.com customer with ID {user_id}. Include:
                1. Customer name and basic info
                2. A recent order of a high-end electronic device (placed on {order_date}, to be delivered by {expected_delivery})
                3. Order details (product, price, order number)
                4. Customer's shipping address
                5. 2-3 previous orders from the past year
                6. 2-3 customer service interactions related to these orders
                7. Any preferences or patterns in their shopping behavior

                Format the output as a JSON object."""

                response = self.client.chat.completions.create(
                    model="gpt-4",
                    messages=[
                        {"role": "system", "content": "You are a data generation AI that creates realistic customer profiles and order histories. Always respond with valid JSON."},
                        {"role": "user", "content": prompt}
                    ]
                )

                customer_data = json.loads(response.choices[0].message.content)

                # Add generated data to memory
                for key, value in customer_data.items():
                    if isinstance(value, list):
                        for item in value:
                            self.memory.add(
                                json.dumps(item), 
                                user_id=user_id, 
                                metadata={"app_id": self.app_id, "role": "system"}
                            )
                    else:
                        self.memory.add(
                            f"{key}: {json.dumps(value)}", 
                            user_id=user_id, 
                            metadata={"app_id": self.app_id, "role": "system"}
                        )

                return customer_data
            except Exception as e:
                st.error(f"Failed to generate synthetic data: {e}")
                return None

    # Initialize the CustomerSupportAIAgent
    support_agent = CustomerSupportAIAgent()

    # Sidebar for customer ID and memory view
    st.sidebar.title("Enter your Customer ID:")
    previous_customer_id = st.session_state.get("previous_customer_id", None)
    customer_id = st.sidebar.text_input("Enter your Customer ID")

    if customer_id != previous_customer_id:
        st.session_state.messages = []
        st.session_state.previous_customer_id = customer_id
        st.session_state.customer_data = None

    # Add button to generate synthetic data
    if st.sidebar.button("Generate Synthetic Data"):
        if customer_id:
            with st.spinner("Generating customer data..."):
                st.session_state.customer_data = support_agent.generate_synthetic_data(customer_id)
            if st.session_state.customer_data:
                st.sidebar.success("Synthetic data generated successfully!")
            else:
                st.sidebar.error("Failed to generate synthetic data.")
        else:
            st.sidebar.error("Please enter a customer ID first.")

    if st.sidebar.button("View Customer Profile"):
        if st.session_state.customer_data:
            st.sidebar.json(st.session_state.customer_data)
        else:
            st.sidebar.info("No customer data generated yet. Click 'Generate Synthetic Data' first.")

    if st.sidebar.button("View Memory Info"):
        if customer_id:
            memories = support_agent.get_memories(user_id=customer_id)
            if memories:
                st.sidebar.write(f"Memory for customer **{customer_id}**:")
                if memories and "results" in memories:
                    for memory in memories["results"]:
                        if "memory" in memory:
                            st.write(f"- {memory['memory']}")
            else:
                st.sidebar.info("No memory found for this customer ID.")
        else:
            st.sidebar.error("Please enter a customer ID to view memory info.")

    # Initialize the chat history
    if "messages" not in st.session_state:
        st.session_state.messages = []

    # Display the chat history
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    # Accept user input
    query = st.chat_input("How can I assist you today?")

    if query and customer_id:
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": query})
        with st.chat_message("user"):
            st.markdown(query)

        # Generate and display response
        with st.spinner("Generating response..."):
            answer = support_agent.handle_query(query, user_id=customer_id)

        # Add assistant response to chat history
        st.session_state.messages.append({"role": "assistant", "content": answer})
        with st.chat_message("assistant"):
            st.markdown(answer)

    elif not customer_id:
        st.error("Please enter a customer ID to start the chat.")

else:
    st.warning("Please enter your OpenAI API key to use the customer support agent.")