Customer_Support_Agent / src /streamlit_app.py
thisisdev's picture
Main Function for Customer Support Agent
9cc7f92 verified
raw
history blame
8.7 kB
import streamlit as st
from openai import OpenAI
from mem0 import Memory
import os
import json
from datetime import datetime, timedelta
# Set up the Streamlit App
st.title("AI Customer Support Agent with Memory πŸ›’")
st.caption("Chat with a customer support assistant who remembers your past interactions.")
# Set the OpenAI API key
openai_api_key = st.text_input("Enter OpenAI API Key", type="password")
if openai_api_key:
os.environ['OPENAI_API_KEY'] = openai_api_key
class CustomerSupportAIAgent:
def __init__(self):
# Initialize Mem0 with Qdrant as the vector store
config = {
"vector_store": {
"provider": "qdrant",
"config": {
"host": "localhost",
"port": 6333,
}
},
}
try:
self.memory = Memory.from_config(config)
except Exception as e:
st.error(f"Failed to initialize memory: {e}")
st.stop() # Stop execution if memory initialization fails
self.client = OpenAI()
self.app_id = "customer-support"
def handle_query(self, query, user_id=None):
try:
# Search for relevant memories
relevant_memories = self.memory.search(query=query, user_id=user_id)
# Build context from relevant memories
context = "Relevant past information:\n"
if relevant_memories and "results" in relevant_memories:
for memory in relevant_memories["results"]:
if "memory" in memory:
context += f"- {memory['memory']}\n"
# Generate a response using OpenAI
full_prompt = f"{context}\nCustomer: {query}\nSupport Agent:"
response = self.client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a customer support AI agent for TechGadgets.com, an online electronics store."},
{"role": "user", "content": full_prompt}
]
)
answer = response.choices[0].message.content
# Add the query and answer to memory
self.memory.add(query, user_id=user_id, metadata={"app_id": self.app_id, "role": "user"})
self.memory.add(answer, user_id=user_id, metadata={"app_id": self.app_id, "role": "assistant"})
return answer
except Exception as e:
st.error(f"An error occurred while handling the query: {e}")
return "Sorry, I encountered an error. Please try again later."
def get_memories(self, user_id=None):
try:
# Retrieve all memories for a user
return self.memory.get_all(user_id=user_id)
except Exception as e:
st.error(f"Failed to retrieve memories: {e}")
return None
def generate_synthetic_data(self, user_id: str) -> dict | None:
try:
today = datetime.now()
order_date = (today - timedelta(days=10)).strftime("%B %d, %Y")
expected_delivery = (today + timedelta(days=2)).strftime("%B %d, %Y")
prompt = f"""Generate a detailed customer profile and order history for a TechGadgets.com customer with ID {user_id}. Include:
1. Customer name and basic info
2. A recent order of a high-end electronic device (placed on {order_date}, to be delivered by {expected_delivery})
3. Order details (product, price, order number)
4. Customer's shipping address
5. 2-3 previous orders from the past year
6. 2-3 customer service interactions related to these orders
7. Any preferences or patterns in their shopping behavior
Format the output as a JSON object."""
response = self.client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a data generation AI that creates realistic customer profiles and order histories. Always respond with valid JSON."},
{"role": "user", "content": prompt}
]
)
customer_data = json.loads(response.choices[0].message.content)
# Add generated data to memory
for key, value in customer_data.items():
if isinstance(value, list):
for item in value:
self.memory.add(
json.dumps(item),
user_id=user_id,
metadata={"app_id": self.app_id, "role": "system"}
)
else:
self.memory.add(
f"{key}: {json.dumps(value)}",
user_id=user_id,
metadata={"app_id": self.app_id, "role": "system"}
)
return customer_data
except Exception as e:
st.error(f"Failed to generate synthetic data: {e}")
return None
# Initialize the CustomerSupportAIAgent
support_agent = CustomerSupportAIAgent()
# Sidebar for customer ID and memory view
st.sidebar.title("Enter your Customer ID:")
previous_customer_id = st.session_state.get("previous_customer_id", None)
customer_id = st.sidebar.text_input("Enter your Customer ID")
if customer_id != previous_customer_id:
st.session_state.messages = []
st.session_state.previous_customer_id = customer_id
st.session_state.customer_data = None
# Add button to generate synthetic data
if st.sidebar.button("Generate Synthetic Data"):
if customer_id:
with st.spinner("Generating customer data..."):
st.session_state.customer_data = support_agent.generate_synthetic_data(customer_id)
if st.session_state.customer_data:
st.sidebar.success("Synthetic data generated successfully!")
else:
st.sidebar.error("Failed to generate synthetic data.")
else:
st.sidebar.error("Please enter a customer ID first.")
if st.sidebar.button("View Customer Profile"):
if st.session_state.customer_data:
st.sidebar.json(st.session_state.customer_data)
else:
st.sidebar.info("No customer data generated yet. Click 'Generate Synthetic Data' first.")
if st.sidebar.button("View Memory Info"):
if customer_id:
memories = support_agent.get_memories(user_id=customer_id)
if memories:
st.sidebar.write(f"Memory for customer **{customer_id}**:")
if memories and "results" in memories:
for memory in memories["results"]:
if "memory" in memory:
st.write(f"- {memory['memory']}")
else:
st.sidebar.info("No memory found for this customer ID.")
else:
st.sidebar.error("Please enter a customer ID to view memory info.")
# Initialize the chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display the chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
query = st.chat_input("How can I assist you today?")
if query and customer_id:
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": query})
with st.chat_message("user"):
st.markdown(query)
# Generate and display response
with st.spinner("Generating response..."):
answer = support_agent.handle_query(query, user_id=customer_id)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": answer})
with st.chat_message("assistant"):
st.markdown(answer)
elif not customer_id:
st.error("Please enter a customer ID to start the chat.")
else:
st.warning("Please enter your OpenAI API key to use the customer support agent.")