Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,119 Bytes
639c25d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
#!/usr/bin/env python
from __future__ import annotations
import os
import gradio as gr
from model import Model
DESCRIPTION = '# [UniDiffuser](https://github.com/thu-ml/unidiffuser)'
SPACE_ID = os.getenv('SPACE_ID')
if SPACE_ID is not None:
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
model = Model()
def create_demo(mode_name: str) -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
mode = gr.Dropdown(label='Mode',
choices=[
't2i',
'i2t',
'joint',
'i',
't',
'i2ti2',
't2i2t',
],
value=mode_name,
visible=False)
prompt = gr.Text(label='Prompt',
max_lines=1,
visible=mode_name in ['t2i', 't2i2t'])
image = gr.Image(label='Input image',
type='filepath',
visible=mode_name in ['i2t', 'i2t2i'])
run_button = gr.Button('Run')
with gr.Accordion('Advanced options', open=False):
seed = gr.Slider(
label='Seed',
minimum=-1,
maximum=1000000,
step=1,
value=-1,
info=
'If set to -1, a different seed will be used each time.'
)
num_steps = gr.Slider(label='Steps',
minimum=1,
maximum=100,
value=50,
step=1)
guidance_scale = gr.Slider(label='Guidance Scale',
minimum=0.1,
maximum=30.0,
value=7.0,
step=0.1)
with gr.Column():
result_image = gr.Image(label='Generated image',
visible=mode_name
in ['t2i', 'i', 'joint', 'i2t2i'])
result_text = gr.Text(label='Generated text',
visible=mode_name
in ['i2t', 't', 'joint', 't2i2t'])
inputs = [
mode,
prompt,
image,
seed,
num_steps,
guidance_scale,
]
outputs = [
result_image,
result_text,
]
prompt.submit(fn=model.run, inputs=inputs, outputs=outputs)
run_button.click(fn=model.run, inputs=inputs, outputs=outputs)
return demo
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem('text2image'):
create_demo('t2i')
with gr.TabItem('image2text'):
create_demo('i2t')
with gr.TabItem('image variation'):
create_demo('i2t2i')
with gr.TabItem('joint generation'):
create_demo('joint')
with gr.TabItem('image generation'):
create_demo('i')
with gr.TabItem('text generation'):
create_demo('t')
with gr.TabItem('text variation'):
create_demo('t2i2t')
demo.queue(api_open=False).launch()
|