Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,367 Bytes
639c25d 2881ba6 639c25d 2881ba6 a17d56c 4539421 2881ba6 a17d56c 639c25d 2149360 639c25d 2881ba6 2149360 639c25d 2881ba6 51a0099 2881ba6 639c25d a17d56c 4539421 51a0099 a17d56c 9d4657b a17d56c 51a0099 a17d56c 51a0099 a17d56c 51a0099 a17d56c 51a0099 a17d56c 51a0099 a17d56c 51a0099 a17d56c 51a0099 a17d56c 639c25d 2149360 639c25d 2149360 0481263 2881ba6 c9d5e42 2881ba6 a17d56c 0481263 2149360 c9d5e42 2881ba6 639c25d 51a0099 639c25d 2149360 75746df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
#!/usr/bin/env python
import random
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import UniDiffuserPipeline
DESCRIPTION = "# [UniDiffuser](https://github.com/thu-ml/unidiffuser)"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶</p>"
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED) # noqa: S311
return seed
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16)
pipe.to(device)
@spaces.GPU
def run( # noqa: PLR0911
mode: str,
prompt: str,
image: PIL.Image.Image | None,
seed: int = 0,
num_steps: int = 20,
guidance_scale: float = 8.0,
) -> tuple[PIL.Image.Image | None, str]:
generator = torch.Generator(device=device).manual_seed(seed)
if image is not None:
image = image.resize((512, 512))
if mode == "t2i":
pipe.set_text_to_image_mode()
sample = pipe(prompt=prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator)
return sample.images[0], ""
if mode == "i2t":
pipe.set_image_to_text_mode()
sample = pipe(image=image, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator)
return None, sample.text[0]
if mode == "joint":
pipe.set_joint_mode()
sample = pipe(num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator)
return sample.images[0], sample.text[0]
if mode == "i":
pipe.set_image_mode()
sample = pipe(num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator)
return sample.images[0], ""
if mode == "t":
pipe.set_text_mode()
sample = pipe(num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator)
return None, sample.text[0]
if mode == "i2t2i":
pipe.set_image_to_text_mode()
sample = pipe(image=image, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator)
pipe.set_text_to_image_mode()
sample = pipe(
prompt=sample.text[0],
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
generator=generator,
)
return sample.images[0], ""
if mode == "t2i2t":
pipe.set_text_to_image_mode()
sample = pipe(prompt=prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator)
pipe.set_image_to_text_mode()
sample = pipe(
image=sample.images[0],
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
generator=generator,
)
return None, sample.text[0]
raise ValueError
def create_demo(mode_name: str) -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
mode = gr.Dropdown(
label="Mode",
choices=[
"t2i",
"i2t",
"joint",
"i",
"t",
"i2t2i",
"t2i2t",
],
value=mode_name,
visible=False,
)
prompt = gr.Text(label="Prompt", max_lines=1, visible=mode_name in ["t2i", "t2i2t"])
image = gr.Image(label="Input image", type="pil", visible=mode_name in ["i2t", "i2t2i"])
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=100,
value=20,
step=1,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=30.0,
value=8.0,
step=0.1,
)
with gr.Column():
result_image = gr.Image(label="Generated image", visible=mode_name in ["t2i", "i", "joint", "i2t2i"])
result_text = gr.Text(label="Generated text", visible=mode_name in ["i2t", "t", "joint", "t2i2t"])
gr.on(
triggers=[prompt.submit, run_button.click],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
api_name=False,
concurrency_limit=None,
).then(
fn=run,
inputs=[
mode,
prompt,
image,
seed,
num_steps,
guidance_scale,
],
outputs=[
result_image,
result_text,
],
api_name=f"run_{mode_name}",
concurrency_limit=1,
concurrency_id="gpu",
)
return demo
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem("text2image"):
create_demo("t2i")
with gr.TabItem("image2text"):
create_demo("i2t")
with gr.TabItem("image variation"):
create_demo("i2t2i")
with gr.TabItem("joint generation"):
create_demo("joint")
with gr.TabItem("image generation"):
create_demo("i")
with gr.TabItem("text generation"):
create_demo("t")
with gr.TabItem("text variation"):
create_demo("t2i2t")
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|