Spaces:
Running
Running
image get_image_from_stream(CvCapture *cap); | |
image ipl_to_image(IplImage* src); | |
void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters); | |
typedef struct { | |
float *x; | |
float *y; | |
} float_pair; | |
float_pair get_rnn_vid_data(network net, char **files, int n, int batch, int steps) | |
{ | |
int b; | |
assert(net.batch == steps + 1); | |
image out_im = get_network_image(net); | |
int output_size = out_im.w*out_im.h*out_im.c; | |
printf("%d %d %d\n", out_im.w, out_im.h, out_im.c); | |
float *feats = calloc(net.batch*batch*output_size, sizeof(float)); | |
for(b = 0; b < batch; ++b){ | |
int input_size = net.w*net.h*net.c; | |
float *input = calloc(input_size*net.batch, sizeof(float)); | |
char *filename = files[rand()%n]; | |
CvCapture *cap = cvCaptureFromFile(filename); | |
int frames = cvGetCaptureProperty(cap, CV_CAP_PROP_FRAME_COUNT); | |
int index = rand() % (frames - steps - 2); | |
if (frames < (steps + 4)){ | |
--b; | |
free(input); | |
continue; | |
} | |
printf("frames: %d, index: %d\n", frames, index); | |
cvSetCaptureProperty(cap, CV_CAP_PROP_POS_FRAMES, index); | |
int i; | |
for(i = 0; i < net.batch; ++i){ | |
IplImage* src = cvQueryFrame(cap); | |
image im = ipl_to_image(src); | |
rgbgr_image(im); | |
image re = resize_image(im, net.w, net.h); | |
//show_image(re, "loaded"); | |
//cvWaitKey(10); | |
memcpy(input + i*input_size, re.data, input_size*sizeof(float)); | |
free_image(im); | |
free_image(re); | |
} | |
float *output = network_predict(net, input); | |
free(input); | |
for(i = 0; i < net.batch; ++i){ | |
memcpy(feats + (b + i*batch)*output_size, output + i*output_size, output_size*sizeof(float)); | |
} | |
cvReleaseCapture(&cap); | |
} | |
//printf("%d %d %d\n", out_im.w, out_im.h, out_im.c); | |
float_pair p = {0}; | |
p.x = feats; | |
p.y = feats + output_size*batch; //+ out_im.w*out_im.h*out_im.c; | |
return p; | |
} | |
void train_vid_rnn(char *cfgfile, char *weightfile) | |
{ | |
char *train_videos = "data/vid/train.txt"; | |
char *backup_directory = "/home/pjreddie/backup/"; | |
srand(time(0)); | |
char *base = basecfg(cfgfile); | |
printf("%s\n", base); | |
float avg_loss = -1; | |
network net = parse_network_cfg(cfgfile); | |
if(weightfile){ | |
load_weights(&net, weightfile); | |
} | |
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); | |
int imgs = net.batch*net.subdivisions; | |
int i = *net.seen/imgs; | |
list *plist = get_paths(train_videos); | |
int N = plist->size; | |
char **paths = (char **)list_to_array(plist); | |
clock_t time; | |
int steps = net.time_steps; | |
int batch = net.batch / net.time_steps; | |
network extractor = parse_network_cfg("cfg/extractor.cfg"); | |
load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv"); | |
while(get_current_batch(net) < net.max_batches){ | |
i += 1; | |
time=clock(); | |
float_pair p = get_rnn_vid_data(extractor, paths, N, batch, steps); | |
copy_cpu(net.inputs*net.batch, p.x, 1, net.input, 1); | |
copy_cpu(net.truths*net.batch, p.y, 1, net.truth, 1); | |
float loss = train_network_datum(net) / (net.batch); | |
free(p.x); | |
if (avg_loss < 0) avg_loss = loss; | |
avg_loss = avg_loss*.9 + loss*.1; | |
fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time)); | |
if(i%100==0){ | |
char buff[256]; | |
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); | |
save_weights(net, buff); | |
} | |
if(i%10==0){ | |
char buff[256]; | |
sprintf(buff, "%s/%s.backup", backup_directory, base); | |
save_weights(net, buff); | |
} | |
} | |
char buff[256]; | |
sprintf(buff, "%s/%s_final.weights", backup_directory, base); | |
save_weights(net, buff); | |
} | |
image save_reconstruction(network net, image *init, float *feat, char *name, int i) | |
{ | |
image recon; | |
if (init) { | |
recon = copy_image(*init); | |
} else { | |
recon = make_random_image(net.w, net.h, 3); | |
} | |
image update = make_image(net.w, net.h, 3); | |
reconstruct_picture(net, feat, recon, update, .01, .9, .1, 2, 50); | |
char buff[256]; | |
sprintf(buff, "%s%d", name, i); | |
save_image(recon, buff); | |
free_image(update); | |
return recon; | |
} | |
void generate_vid_rnn(char *cfgfile, char *weightfile) | |
{ | |
network extractor = parse_network_cfg("cfg/extractor.recon.cfg"); | |
load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv"); | |
network net = parse_network_cfg(cfgfile); | |
if(weightfile){ | |
load_weights(&net, weightfile); | |
} | |
set_batch_network(&extractor, 1); | |
set_batch_network(&net, 1); | |
int i; | |
CvCapture *cap = cvCaptureFromFile("/extra/vid/ILSVRC2015/Data/VID/snippets/val/ILSVRC2015_val_00007030.mp4"); | |
float *feat; | |
float *next; | |
image last; | |
for(i = 0; i < 25; ++i){ | |
image im = get_image_from_stream(cap); | |
image re = resize_image(im, extractor.w, extractor.h); | |
feat = network_predict(extractor, re.data); | |
if(i > 0){ | |
printf("%f %f\n", mean_array(feat, 14*14*512), variance_array(feat, 14*14*512)); | |
printf("%f %f\n", mean_array(next, 14*14*512), variance_array(next, 14*14*512)); | |
printf("%f\n", mse_array(feat, 14*14*512)); | |
axpy_cpu(14*14*512, -1, feat, 1, next, 1); | |
printf("%f\n", mse_array(next, 14*14*512)); | |
} | |
next = network_predict(net, feat); | |
free_image(im); | |
free_image(save_reconstruction(extractor, 0, feat, "feat", i)); | |
free_image(save_reconstruction(extractor, 0, next, "next", i)); | |
if (i==24) last = copy_image(re); | |
free_image(re); | |
} | |
for(i = 0; i < 30; ++i){ | |
next = network_predict(net, next); | |
image new = save_reconstruction(extractor, &last, next, "new", i); | |
free_image(last); | |
last = new; | |
} | |
} | |
void run_vid_rnn(int argc, char **argv) | |
{ | |
if(argc < 4){ | |
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); | |
return; | |
} | |
char *cfg = argv[3]; | |
char *weights = (argc > 4) ? argv[4] : 0; | |
//char *filename = (argc > 5) ? argv[5]: 0; | |
if(0==strcmp(argv[2], "train")) train_vid_rnn(cfg, weights); | |
else if(0==strcmp(argv[2], "generate")) generate_vid_rnn(cfg, weights); | |
} | |
void run_vid_rnn(int argc, char **argv){} | |