rwightman's picture
rwightman HF staff
Update app.py
e9cfdba verified
raw
history blame
8.59 kB
from typing import List, Tuple, Dict
from collections import OrderedDict
import gradio as gr
import torch
import torch.nn.functional as F
import timm
from timm.data import create_transform
from timm.models import create_model
from timm.utils import AttentionExtract
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
def get_attention_models() -> List[str]:
"""Get a list of timm models that have attention blocks."""
all_models = timm.list_pretrained()
# FIXME Focusing on ViT models for initial impl
attention_models = [model for model in all_models if any([model.lower().startswith(p) for p in ('vit', 'deit', 'beit', 'eva')])]
return attention_models
def load_model(model_name: str) -> Tuple[torch.nn.Module, AttentionExtract]:
"""Load a model from timm and prepare it for attention extraction."""
timm.layers.set_fused_attn(False)
model = create_model(model_name, pretrained=True)
model.eval()
extractor = AttentionExtract(model, method='fx') # can use 'hooks', can also allow specifying matching names for attention nodes or modules...
return model, extractor
def process_image(
image: Image.Image,
model: torch.nn.Module,
extractor: AttentionExtract
) -> Dict[str, torch.Tensor]:
"""Process the input image and get the attention maps."""
# Get the correct transform for the model
config = model.pretrained_cfg
transform = create_transform(
input_size=config['input_size'],
crop_pct=config['crop_pct'],
mean=config['mean'],
std=config['std'],
interpolation=config['interpolation'],
is_training=False
)
# Preprocess the image
tensor = transform(image).unsqueeze(0)
# Extract attention maps
attention_maps = extractor(tensor)
return attention_maps
def apply_mask(image: np.ndarray, mask: np.ndarray, color: Tuple[float, float, float], alpha: float = 0.5) -> np.ndarray:
# Ensure mask and image have the same shape
mask = mask[:, :, np.newaxis]
mask = np.repeat(mask, 3, axis=2)
# Convert color to numpy array
color = np.array(color)
# Apply mask
masked_image = image * (1 - alpha * mask) + alpha * mask * color[np.newaxis, np.newaxis, :] * 255
return masked_image.astype(np.uint8)
def rollout(attentions, discard_ratio, head_fusion, num_prefix_tokens=1):
# based on https://github.com/jacobgil/vit-explain/blob/main/vit_rollout.py
result = torch.eye(attentions[0].size(-1))
with torch.no_grad():
for attention in attentions:
if head_fusion.startswith('mean'):
# mean_std fusion doesn't appear to make sense with rollout
attention_heads_fused = attention.mean(dim=0)
elif head_fusion == "max":
attention_heads_fused = attention.amax(dim=0)
elif head_fusion == "min":
attention_heads_fused = attention.amin(dim=0)
else:
raise ValueError("Attention head fusion type Not supported")
# Discard the lowest attentions, but don't discard the prefix tokens
flat = attention_heads_fused.view(-1)
_, indices = flat.topk(int(flat.size(-1 )* discard_ratio), -1, False)
indices = indices[indices >= num_prefix_tokens]
flat[indices] = 0
I = torch.eye(attention_heads_fused.size(-1))
a = (attention_heads_fused + 1.0 * I) / 2
a = a / a.sum(dim=-1)
result = torch.matmul(a, result)
# Look at the total attention between the prefix tokens (usually class tokens)
# and the image patches
# FIXME this is token 0 vs non-prefix right now, need to cover other cases (> 1 prefix, no prefix, etc)
mask = result[0, num_prefix_tokens:]
width = int(mask.size(-1) ** 0.5)
mask = mask.reshape(width, width).numpy()
mask = mask / np.max(mask)
return mask
def visualize_attention(
image: Image.Image,
model_name: str,
head_fusion: str,
discard_ratio: float,
) -> Tuple[List[Image.Image], Image.Image]:
"""Visualize attention maps and rollout for the given image and model."""
model, extractor = load_model(model_name)
attention_maps = process_image(image, model, extractor)
# FIXME handle wider range of models that may not have num_prefix_tokens attr
num_prefix_tokens = getattr(model, 'num_prefix_tokens', 1) # Default to 1 class token if not specified
# Convert PIL Image to numpy array
image_np = np.array(image)
# Create visualizations
visualizations = []
attentions_for_rollout = []
for layer_name, attn_map in attention_maps.items():
print(f"Attention map shape for {layer_name}: {attn_map.shape}")
attn_map = attn_map[0] # Remove batch dimension
attentions_for_rollout.append(attn_map)
attn_map = attn_map[:, :, num_prefix_tokens:] # Remove prefix tokens for visualization
if head_fusion == 'mean_std':
attn_map = attn_map.mean(0) / attn_map.std(0)
elif head_fusion == 'mean':
attn_map = attn_map.mean(0)
elif head_fusion == 'max':
attn_map = attn_map.amax(0)
elif head_fusion == 'min':
attn_map = attn_map.amin(0)
else:
raise ValueError(f"Invalid head fusion method: {head_fusion}")
# Use the first token's attention (usually the class token)
# FIXME handle different prefix token scenarios
attn_map = attn_map[0]
# Reshape the attention map to 2D
num_patches = int(attn_map.shape[0] ** 0.5)
attn_map = attn_map.reshape(num_patches, num_patches)
# Interpolate to match image size
attn_map = torch.tensor(attn_map).unsqueeze(0).unsqueeze(0)
attn_map = F.interpolate(attn_map, size=(image_np.shape[0], image_np.shape[1]), mode='bilinear', align_corners=False)
attn_map = attn_map.squeeze().cpu().numpy()
# Normalize attention map
attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min())
# Create visualization
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
# Original image
ax1.imshow(image_np)
ax1.set_title("Original Image")
ax1.axis('off')
# Attention map overlay
masked_image = apply_mask(image_np, attn_map, color=(1, 0, 0)) # Red mask
ax2.imshow(masked_image)
ax2.set_title(f'Attention Map for {layer_name}')
ax2.axis('off')
plt.tight_layout()
# Convert plot to image
fig.canvas.draw()
vis_image = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
visualizations.append(vis_image)
plt.close(fig)
# Calculate rollout
rollout_mask = rollout(attentions_for_rollout, discard_ratio, head_fusion, num_prefix_tokens)
# Create rollout visualization
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
# Original image
ax1.imshow(image_np)
ax1.set_title("Original Image")
ax1.axis('off')
# Rollout overlay
rollout_mask_pil = Image.fromarray((rollout_mask * 255).astype(np.uint8))
rollout_mask_resized = np.array(rollout_mask_pil.resize((image_np.shape[1], image_np.shape[0]), Image.BICUBIC)) / 255.0
masked_image = apply_mask(image_np, rollout_mask_resized, color=(1, 0, 0)) # Red mask
ax2.imshow(masked_image)
ax2.set_title('Attention Rollout')
ax2.axis('off')
plt.tight_layout()
# Convert plot to image
fig.canvas.draw()
rollout_image = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
plt.close(fig)
return visualizations, rollout_image
# Create Gradio interface
iface = gr.Interface(
fn=visualize_attention,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Dropdown(choices=get_attention_models(), label="Select Model"),
gr.Dropdown(
choices=['mean_std', 'mean', 'max', 'min'],
label="Head Fusion Method",
value='mean' # Default value
),
gr.Slider(0, 1, 0.9, label="Discard Ratio", info="Ratio of lowest attentions to discard")
],
outputs=[
gr.Gallery(label="Attention Maps"),
gr.Image(label="Attention Rollout")
],
title="Attention Map Visualizer for timm Models",
description="Upload an image and select a timm model to visualize its attention maps."
)
iface.launch()