Spaces:
Sleeping
Sleeping
Fix #23 app.py
Browse files
app.py
CHANGED
|
@@ -11,6 +11,7 @@ from torchvision.utils import save_image
|
|
| 11 |
import gradio as gr
|
| 12 |
import numpy as np
|
| 13 |
import io
|
|
|
|
| 14 |
|
| 15 |
# Aseg煤rate de que las funciones necesarias est茅n definidas (si no lo est谩n ya)
|
| 16 |
def resize(img, size):
|
|
@@ -265,11 +266,15 @@ class Solver(object):
|
|
| 265 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 266 |
])
|
| 267 |
# Convertir a PIL image antes de la transformaci贸n
|
| 268 |
-
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
-
source_image = transform(
|
| 272 |
-
reference_image = transform(
|
| 273 |
|
| 274 |
# Codificar el estilo de la imagen de referencia
|
| 275 |
s_ref = self.S(reference_image, torch.tensor([0]).to(self.device))
|
|
@@ -307,7 +312,7 @@ def gradio_interface():
|
|
| 307 |
)
|
| 308 |
|
| 309 |
# Ruta al checkpoint
|
| 310 |
-
checkpoint_path = "iter/
|
| 311 |
|
| 312 |
# Crear la interfaz de Gradio
|
| 313 |
inputs = [
|
|
@@ -330,4 +335,4 @@ def gradio_interface():
|
|
| 330 |
|
| 331 |
if __name__ == '__main__':
|
| 332 |
iface = gradio_interface()
|
| 333 |
-
iface.launch(share=True)
|
|
|
|
| 11 |
import gradio as gr
|
| 12 |
import numpy as np
|
| 13 |
import io
|
| 14 |
+
import tempfile # Importar tempfile
|
| 15 |
|
| 16 |
# Aseg煤rate de que las funciones necesarias est茅n definidas (si no lo est谩n ya)
|
| 17 |
def resize(img, size):
|
|
|
|
| 266 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 267 |
])
|
| 268 |
# Convertir a PIL image antes de la transformaci贸n
|
| 269 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg") as source_temp_file, \
|
| 270 |
+
tempfile.NamedTemporaryFile(suffix=".jpg") as reference_temp_file:
|
| 271 |
+
source_temp_file.write(source_image)
|
| 272 |
+
reference_temp_file.write(reference_image)
|
| 273 |
+
source_image_pil = Image.open(source_temp_file.name)
|
| 274 |
+
reference_image_pil = Image.open(reference_temp_file.name)
|
| 275 |
|
| 276 |
+
source_image = transform(source_image_pil).unsqueeze(0).to(self.device)
|
| 277 |
+
reference_image = transform(reference_image_pil).unsqueeze(0).to(self.device)
|
| 278 |
|
| 279 |
# Codificar el estilo de la imagen de referencia
|
| 280 |
s_ref = self.S(reference_image, torch.tensor([0]).to(self.device))
|
|
|
|
| 312 |
)
|
| 313 |
|
| 314 |
# Ruta al checkpoint
|
| 315 |
+
checkpoint_path = "iter/10500_nets_ema.ckpt"
|
| 316 |
|
| 317 |
# Crear la interfaz de Gradio
|
| 318 |
inputs = [
|
|
|
|
| 335 |
|
| 336 |
if __name__ == '__main__':
|
| 337 |
iface = gradio_interface()
|
| 338 |
+
iface.launch(share=True)
|