Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# Load the model and tokenizer | |
model_name = "google/flan-t5-large" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
def concatenate_and_generate(text1, text2, temperature, top_p): | |
concatenated_text = text1 + " " + text2 | |
inputs = tokenizer(concatenated_text, return_tensors="pt") | |
# Generate the output with specified temperature and top_p | |
output = model.generate( | |
inputs["input_ids"], | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
max_length=100 | |
) | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text | |
# Define Gradio interface | |
inputs = [ | |
gr.inputs.Textbox(lines=2, placeholder="Enter first text here..."), | |
gr.inputs.Textbox(lines=2, placeholder="Enter second text here..."), | |
gr.inputs.Slider(0.1, 1.0, 0.7, step=0.1, label="Temperature"), | |
gr.inputs.Slider(0.1, 1.0, 0.9, step=0.1, label="Top-p") | |
] | |
outputs = gr.outputs.Textbox() | |
gr.Interface( | |
fn=concatenate_and_generate, | |
inputs=inputs, | |
outputs=outputs, | |
title="Text Concatenation and Generation with FLAN-T5", | |
description="Concatenate two input texts and generate an output using google/flan-t5-large. Adjust the temperature and top_p parameters for different generation behaviors." | |
).launch() |