tinystyler_demo / app.py
AjayP13's picture
Update app.py
9687f11 verified
raw
history blame
7.57 kB
import torch
import numpy as np
from torch.nn.utils.rnn import pad_sequence
import gradio as gr
from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
from time import time
# Load the model and tokenizer
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_name = "google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model.to(device)
embedding_model = SentenceTransformer('AnnaWegmann/Style-Embedding', device='cpu').half()
luar_model = AutoModel.from_pretrained("rrivera1849/LUAR-MUD", revision="51b0d9ecec5336314e02f191dd8ca4acc0652fe1", trust_remote_code=True).half()
luar_model.to(device)
luar_tokenizer = AutoTokenizer.from_pretrained("rrivera1849/LUAR-MUD", revision="51b0d9ecec5336314e02f191dd8ca4acc0652fe1", trust_remote_code=True)
def get_target_style_embeddings(target_texts_batch):
all_target_texts = [target_text for target_texts in target_texts_batch for target_text in target_texts]
embeddings = embedding_model.encode(all_target_texts, batch_size=len(all_target_texts), convert_to_tensor=True, show_progress_bar=False)
lengths = [len(target_texts) for target_texts in target_texts_batch]
split_embeddings = torch.split(embeddings, lengths)
padded_embeddings = pad_sequence(split_embeddings, batch_first=True, padding_value=0.0)
mask = (torch.arange(padded_embeddings.size(1))[None, :] < torch.tensor(lengths)[:, None]).to(embeddings.dtype).unsqueeze(-1)
mean_embeddings = torch.sum(padded_embeddings * mask, dim=1) / mask.sum(dim=1)
return mean_embeddings.float().cpu().numpy()
@torch.no_grad()
def get_luar_embeddings(texts_batch):
assert len(set([len(texts) for texts in texts_batch])) == 1
episodes = texts_batch
tokenized_episodes = [luar_tokenizer(episode, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(device) for episode in episodes]
episode_lengths = [t["attention_mask"].shape[0] for t in tokenized_episodes]
max_episode_length = max(episode_lengths)
sequence_lengths = [t["attention_mask"].shape[1] for t in tokenized_episodes]
max_sequence_length = max(sequence_lengths)
padded_input_ids = [torch.nn.functional.pad(t["input_ids"], (0, 0, 0, max_episode_length - t["input_ids"].shape[0])) for t in tokenized_episodes]
padded_attention_mask = [torch.nn.functional.pad(t["attention_mask"], (0, 0, 0, max_episode_length - t["attention_mask"].shape[0])) for t in tokenized_episodes]
input_ids = torch.stack(padded_input_ids)
attention_mask = torch.stack(padded_attention_mask)
return luar_model(input_ids=input_ids, attention_mask=attention_mask).float().cpu().numpy()
def run_tinystyler_batch(source_texts, target_texts_batch, reranking, temperature, top_p):
inputs = tokenizer(source_texts, return_tensors="pt").to(device)
target_style_embeddings = get_target_style_embeddings(target_texts_batch)
source_style_luar_embeddings = get_luar_embeddings([[st] for st in source_texts])
print("Log 0", time(), source_style_luar_embeddings.shape)
target_style_luar_embeddings = get_luar_embeddings(target_texts_batch)
print("Log 1", time(), target_style_luar_embeddings.shape)
# Generate the output with specified temperature and top_p
output = model.generate(
inputs["input_ids"],
do_sample=True,
temperature=temperature,
top_p=top_p,
max_length=1024,
num_return_sequences=reranking,
)
print("Log 2", time(), output.shape)
generated_texts = tokenizer.batch_decode(output, skip_special_tokens=True)
# Evaluate candidates
candidates_luar_embeddings = [get_luar_embeddings([[candidates[i]] for candidates in generated_texts]) for i in range(reranking)]
print("Log 3", time(), len(candidates_luar_embeddings), len(candidates_luar_embeddings[0]))
# Get best based on re-ranking
generated_texts = [texts[0] for texts in generated_texts]
print("Final Log", time(), len(generated_texts))
return generated_texts
def run_tinystyler(source_text, target_texts, reranking, temperature, top_p):
target_texts = [target_text.strip() for target_text in target_texts.split("\n")]
return run_tinystyler_batch([source_text], [target_texts], reranking, temperature, top_p)[0]
# Preset examples with cached generations
preset_examples = {
"Example 1": {
"source_text": "Once upon a time in a small village",
"target_texts": "In a land far away, there was a kingdom ruled by a wise king. Every day, the people of the kingdom would gather to listen to the king's stories, which were full of wisdom and kindness.",
"reranking": 5,
"temperature": 1.0,
"top_p": 1.0,
"output": "Once upon a time in a small village in a land far away, there was a kingdom ruled by a wise king. Every day, the people of the kingdom would gather to listen to the king's stories, which were full of wisdom and kindness."
},
"Example 2": {
"source_text": "The quick brown fox",
"target_texts": "A nimble, chocolate-colored fox swiftly darted through the emerald forest, weaving between trees with grace and agility.",
"reranking": 5,
"temperature": 0.9,
"top_p": 0.9,
"output": "The quick brown fox, a nimble, chocolate-colored fox, swiftly darted through the emerald forest, weaving between trees with grace and agility."
}
}
# Define Gradio interface
with gr.Blocks(theme="ParityError/[email protected]") as demo:
gr.Markdown("# TinyStyler Demo")
gr.Markdown("Style transfer the source text into the target style, given some example texts of the target style. You can adjust re-ranking and top_p to your desire to control the quality of style transfer. A higher re-ranking value will generally result in better generations, at slower speed.")
with gr.Row():
example_dropdown = gr.Dropdown(label="Examples", choices=list(preset_examples.keys()))
source_text = gr.Textbox(lines=3, placeholder="Enter the source text to transform into the target style...", label="Source Text")
target_texts = gr.Textbox(lines=5, placeholder="Enter example texts of the target style (one per line)...", label="Example Texts of the Target Style")
reranking = gr.Slider(1, 10, value=5, step=1, label="Re-ranking")
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="Top-P")
output = gr.Textbox(lines=5, placeholder="Click 'Generate' to transform the source text into the target style.", label="Output", interactive=False)
def set_example(example_name):
example = preset_examples[example_name]
return example["source_text"], example["target_texts"], example["reranking"], example["temperature"], example["top_p"], example["output"]
example_dropdown.change(
set_example,
inputs=[example_dropdown],
outputs=[source_text, target_texts, reranking, temperature, top_p, output]
)
btn = gr.Button("Generate")
btn.click(run_tinystyler, [source_text, target_texts, reranking, temperature, top_p], output)
# Initialize the fields with the first example
example_dropdown.value, (source_text.value, target_texts.value, reranking.value, temperature.value, top_p.value, output.value) = list(preset_examples.keys())[0], set_example(list(preset_examples.keys())[0])
demo.launch()