tinystyler_demo / app.py
AjayP13's picture
Update app.py
a5b34f7 verified
raw
history blame
5.2 kB
import torch
import numpy as np
from torch.nn.utils.rnn import pad_sequence
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load the model and tokenizer
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_name = "google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
embedding_model = SentenceTransformer('AnnaWegmann/Style-Embedding', device='cpu')
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model.to(device)
def get_target_style_embeddings(target_texts_batch):
all_target_texts = [target_text for target_texts in target_texts_batch for target_text in target_texts]
embeddings = embedding_model.encode(all_target_texts, batch_size=len(all_target_texts), convert_to_tensor=True, show_progress_bar=False)
lengths = [len(target_texts) for target_texts in target_texts_batch]
split_embeddings = torch.split(embeddings, lengths)
padded_embeddings = pad_sequence(split_embeddings, batch_first=True, padding_value=0.0)
mask = (torch.arange(padded_embeddings.size(1))[None, :] < torch.tensor(lengths)[:, None]).to(torch.float32).unsqueeze(-1)
mean_embeddings = torch.sum(padded_embeddings * mask, dim=1) / mask.sum(dim=1)
return mean_embeddings.cpu().numpy()
def run_tinystyler_batch(source_texts, target_example_texts_batch, reranking, temperature, top_p):
inputs = tokenizer(source_texts, return_tensors="pt")
# Generate the output with specified temperature and top_p
output = model.generate(
inputs["input_ids"],
do_sample=True,
temperature=temperature,
top_p=top_p,
max_length=1024
)
generated_texts = tokenizer.decode_batch(output, skip_special_tokens=True)
return generated_texts
def run_tinystyler(source_text, target_example_texts, reranking, temperature, top_p):
return run_tinystyler_batch([source_text], [target_example_texts], reranking, temperature, top_p)[0]
# Preset examples with cached generations
preset_examples = {
"Example 1": {
"source_text": "Once upon a time in a small village",
"target_example_texts": "In a land far away, there was a kingdom ruled by a wise king. Every day, the people of the kingdom would gather to listen to the king's stories, which were full of wisdom and kindness.",
"reranking": 5,
"temperature": 1.0,
"top_p": 1.0,
"output": "Once upon a time in a small village in a land far away, there was a kingdom ruled by a wise king. Every day, the people of the kingdom would gather to listen to the king's stories, which were full of wisdom and kindness."
},
"Example 2": {
"source_text": "The quick brown fox",
"target_example_texts": "A nimble, chocolate-colored fox swiftly darted through the emerald forest, weaving between trees with grace and agility.",
"reranking": 5,
"temperature": 0.9,
"top_p": 0.9,
"output": "The quick brown fox, a nimble, chocolate-colored fox, swiftly darted through the emerald forest, weaving between trees with grace and agility."
}
}
# Define Gradio interface
with gr.Blocks(theme="ParityError/[email protected]") as demo:
gr.Markdown("# TinyStyler Demo")
gr.Markdown("Style transfer the source text into the target style, given some example texts of the target style. You can adjust re-ranking and top_p to your desire to control the quality of style transfer. A higher re-ranking value will generally result in better generations, at slower speed.")
with gr.Row():
example_dropdown = gr.Dropdown(label="Examples", choices=list(preset_examples.keys()))
source_text = gr.Textbox(lines=3, placeholder="Enter the source text to transform into the target style...", label="Source Text")
target_example_texts = gr.Textbox(lines=5, placeholder="Enter example texts of the target style (one per line)...", label="Example Texts of the Target Style")
reranking = gr.Slider(1, 10, value=5, step=1, label="Re-ranking")
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="Top-P")
output = gr.Textbox(lines=5, placeholder="Click 'Generate' to transform the source text into the target style.", label="Output", interactive=False)
def set_example(example_name):
example = preset_examples[example_name]
return example["source_text"], example["target_example_texts"], example["reranking"], example["temperature"], example["top_p"], example["output"]
example_dropdown.change(
set_example,
inputs=[example_dropdown],
outputs=[source_text, target_example_texts, reranking, temperature, top_p, output]
)
btn = gr.Button("Generate")
btn.click(run_tinystyler, [source_text, target_example_texts, reranking, temperature, top_p], output)
# Initialize the fields with the first example
example_dropdown.value, (source_text.value, target_example_texts.value, reranking.value, temperature.value, top_p.value, output.value) = list(preset_examples.keys())[0], set_example(list(preset_examples.keys())[0])
demo.launch()