Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,13 +8,13 @@ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
8 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
model_name = "google/flan-t5-large"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
-
|
12 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
13 |
model.to(device)
|
14 |
|
15 |
def get_target_style_embeddings(target_texts_batch):
|
16 |
all_target_texts = [target_text for target_texts in target_texts_batch for target_text in target_texts]
|
17 |
-
embeddings =
|
18 |
lengths = [len(target_texts) for target_texts in target_texts_batch]
|
19 |
split_embeddings = torch.split(embeddings, lengths)
|
20 |
padded_embeddings = pad_sequence(split_embeddings, batch_first=True, padding_value=0.0)
|
|
|
8 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
model_name = "google/flan-t5-large"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
embedding_model = SentenceTransformer('AnnaWegmann/Style-Embedding', device='cpu')
|
12 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
13 |
model.to(device)
|
14 |
|
15 |
def get_target_style_embeddings(target_texts_batch):
|
16 |
all_target_texts = [target_text for target_texts in target_texts_batch for target_text in target_texts]
|
17 |
+
embeddings = embedding_model.encode(all_target_texts, batch_size=len(all_target_texts), convert_to_tensor=True, show_progress_bar=False)
|
18 |
lengths = [len(target_texts) for target_texts in target_texts_batch]
|
19 |
split_embeddings = torch.split(embeddings, lengths)
|
20 |
padded_embeddings = pad_sequence(split_embeddings, batch_first=True, padding_value=0.0)
|