|
|
|
|
|
|
|
"""Transformer text translation model (pytorch).""" |
|
|
|
from argparse import Namespace |
|
import logging |
|
import math |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from espnet.nets.e2e_asr_common import end_detect |
|
from espnet.nets.e2e_mt_common import ErrorCalculator |
|
from espnet.nets.mt_interface import MTInterface |
|
from espnet.nets.pytorch_backend.e2e_mt import Reporter |
|
from espnet.nets.pytorch_backend.nets_utils import get_subsample |
|
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask |
|
from espnet.nets.pytorch_backend.nets_utils import th_accuracy |
|
from espnet.nets.pytorch_backend.nets_utils import to_device |
|
from espnet.nets.pytorch_backend.transformer.add_sos_eos import add_sos_eos |
|
from espnet.nets.pytorch_backend.transformer.argument import ( |
|
add_arguments_transformer_common, |
|
) |
|
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention |
|
from espnet.nets.pytorch_backend.transformer.decoder import Decoder |
|
from espnet.nets.pytorch_backend.transformer.encoder import Encoder |
|
from espnet.nets.pytorch_backend.transformer.initializer import initialize |
|
from espnet.nets.pytorch_backend.transformer.label_smoothing_loss import ( |
|
LabelSmoothingLoss, |
|
) |
|
from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask |
|
from espnet.nets.pytorch_backend.transformer.mask import target_mask |
|
from espnet.nets.pytorch_backend.transformer.plot import PlotAttentionReport |
|
from espnet.utils.fill_missing_args import fill_missing_args |
|
|
|
|
|
class E2E(MTInterface, torch.nn.Module): |
|
"""E2E module. |
|
|
|
:param int idim: dimension of inputs |
|
:param int odim: dimension of outputs |
|
:param Namespace args: argument Namespace containing options |
|
|
|
""" |
|
|
|
@staticmethod |
|
def add_arguments(parser): |
|
"""Add arguments.""" |
|
group = parser.add_argument_group("transformer model setting") |
|
group = add_arguments_transformer_common(group) |
|
return parser |
|
|
|
@property |
|
def attention_plot_class(self): |
|
"""Return PlotAttentionReport.""" |
|
return PlotAttentionReport |
|
|
|
def __init__(self, idim, odim, args, ignore_id=-1): |
|
"""Construct an E2E object. |
|
|
|
:param int idim: dimension of inputs |
|
:param int odim: dimension of outputs |
|
:param Namespace args: argument Namespace containing options |
|
""" |
|
torch.nn.Module.__init__(self) |
|
|
|
|
|
args = fill_missing_args(args, self.add_arguments) |
|
|
|
if args.transformer_attn_dropout_rate is None: |
|
args.transformer_attn_dropout_rate = args.dropout_rate |
|
self.encoder = Encoder( |
|
idim=idim, |
|
selfattention_layer_type=args.transformer_encoder_selfattn_layer_type, |
|
attention_dim=args.adim, |
|
attention_heads=args.aheads, |
|
conv_wshare=args.wshare, |
|
conv_kernel_length=args.ldconv_encoder_kernel_length, |
|
conv_usebias=args.ldconv_usebias, |
|
linear_units=args.eunits, |
|
num_blocks=args.elayers, |
|
input_layer="embed", |
|
dropout_rate=args.dropout_rate, |
|
positional_dropout_rate=args.dropout_rate, |
|
attention_dropout_rate=args.transformer_attn_dropout_rate, |
|
) |
|
self.decoder = Decoder( |
|
odim=odim, |
|
selfattention_layer_type=args.transformer_decoder_selfattn_layer_type, |
|
attention_dim=args.adim, |
|
attention_heads=args.aheads, |
|
conv_wshare=args.wshare, |
|
conv_kernel_length=args.ldconv_decoder_kernel_length, |
|
conv_usebias=args.ldconv_usebias, |
|
linear_units=args.dunits, |
|
num_blocks=args.dlayers, |
|
dropout_rate=args.dropout_rate, |
|
positional_dropout_rate=args.dropout_rate, |
|
self_attention_dropout_rate=args.transformer_attn_dropout_rate, |
|
src_attention_dropout_rate=args.transformer_attn_dropout_rate, |
|
) |
|
self.pad = 0 |
|
self.sos = odim - 1 |
|
self.eos = odim - 1 |
|
self.odim = odim |
|
self.ignore_id = ignore_id |
|
self.subsample = get_subsample(args, mode="mt", arch="transformer") |
|
self.reporter = Reporter() |
|
|
|
|
|
if args.tie_src_tgt_embedding: |
|
if idim != odim: |
|
raise ValueError( |
|
"When using tie_src_tgt_embedding, idim and odim must be equal." |
|
) |
|
self.encoder.embed[0].weight = self.decoder.embed[0].weight |
|
|
|
|
|
if args.tie_classifier: |
|
self.decoder.output_layer.weight = self.decoder.embed[0].weight |
|
|
|
self.criterion = LabelSmoothingLoss( |
|
self.odim, |
|
self.ignore_id, |
|
args.lsm_weight, |
|
args.transformer_length_normalized_loss, |
|
) |
|
self.normalize_length = args.transformer_length_normalized_loss |
|
self.reset_parameters(args) |
|
self.adim = args.adim |
|
self.error_calculator = ErrorCalculator( |
|
args.char_list, args.sym_space, args.sym_blank, args.report_bleu |
|
) |
|
self.rnnlm = None |
|
|
|
|
|
self.multilingual = args.multilingual |
|
|
|
def reset_parameters(self, args): |
|
"""Initialize parameters.""" |
|
initialize(self, args.transformer_init) |
|
torch.nn.init.normal_( |
|
self.encoder.embed[0].weight, mean=0, std=args.adim ** -0.5 |
|
) |
|
torch.nn.init.constant_(self.encoder.embed[0].weight[self.pad], 0) |
|
torch.nn.init.normal_( |
|
self.decoder.embed[0].weight, mean=0, std=args.adim ** -0.5 |
|
) |
|
torch.nn.init.constant_(self.decoder.embed[0].weight[self.pad], 0) |
|
|
|
def forward(self, xs_pad, ilens, ys_pad): |
|
"""E2E forward. |
|
|
|
:param torch.Tensor xs_pad: batch of padded source sequences (B, Tmax) |
|
:param torch.Tensor ilens: batch of lengths of source sequences (B) |
|
:param torch.Tensor ys_pad: batch of padded target sequences (B, Lmax) |
|
:rtype: torch.Tensor |
|
:return: attention loss value |
|
:rtype: torch.Tensor |
|
:return: accuracy in attention decoder |
|
:rtype: float |
|
""" |
|
|
|
xs_pad = xs_pad[:, : max(ilens)] |
|
src_mask = (~make_pad_mask(ilens.tolist())).to(xs_pad.device).unsqueeze(-2) |
|
xs_pad, ys_pad = self.target_forcing(xs_pad, ys_pad) |
|
hs_pad, hs_mask = self.encoder(xs_pad, src_mask) |
|
|
|
|
|
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) |
|
ys_mask = target_mask(ys_in_pad, self.ignore_id) |
|
pred_pad, pred_mask = self.decoder(ys_in_pad, ys_mask, hs_pad, hs_mask) |
|
|
|
|
|
self.loss = self.criterion(pred_pad, ys_out_pad) |
|
self.acc = th_accuracy( |
|
pred_pad.view(-1, self.odim), ys_out_pad, ignore_label=self.ignore_id |
|
) |
|
|
|
|
|
if self.training: |
|
self.bleu = None |
|
else: |
|
ys_hat = pred_pad.argmax(dim=-1) |
|
self.bleu = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) |
|
|
|
loss_data = float(self.loss) |
|
if self.normalize_length: |
|
self.ppl = np.exp(loss_data) |
|
else: |
|
batch_size = ys_out_pad.size(0) |
|
ys_out_pad = ys_out_pad.view(-1) |
|
ignore = ys_out_pad == self.ignore_id |
|
total_n_tokens = len(ys_out_pad) - ignore.sum().item() |
|
self.ppl = np.exp(loss_data * batch_size / total_n_tokens) |
|
if not math.isnan(loss_data): |
|
self.reporter.report(loss_data, self.acc, self.ppl, self.bleu) |
|
else: |
|
logging.warning("loss (=%f) is not correct", loss_data) |
|
return self.loss |
|
|
|
def scorers(self): |
|
"""Scorers.""" |
|
return dict(decoder=self.decoder) |
|
|
|
def encode(self, xs): |
|
"""Encode source sentences.""" |
|
self.eval() |
|
xs = torch.as_tensor(xs).unsqueeze(0) |
|
enc_output, _ = self.encoder(xs, None) |
|
return enc_output.squeeze(0) |
|
|
|
def target_forcing(self, xs_pad, ys_pad=None, tgt_lang=None): |
|
"""Prepend target language IDs to source sentences for multilingual MT. |
|
|
|
These tags are prepended in source/target sentences as pre-processing. |
|
|
|
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax) |
|
:return: source text without language IDs |
|
:rtype: torch.Tensor |
|
:return: target text without language IDs |
|
:rtype: torch.Tensor |
|
:return: target language IDs |
|
:rtype: torch.Tensor (B, 1) |
|
""" |
|
if self.multilingual: |
|
xs_pad = xs_pad[:, 1:] |
|
if ys_pad is not None: |
|
|
|
lang_ids = ys_pad[:, 0].unsqueeze(1) |
|
ys_pad = ys_pad[:, 1:] |
|
elif tgt_lang is not None: |
|
lang_ids = xs_pad.new_zeros(xs_pad.size(0), 1).fill_(tgt_lang) |
|
else: |
|
raise ValueError("Set ys_pad or tgt_lang.") |
|
|
|
|
|
xs_pad = torch.cat([lang_ids, xs_pad], dim=1) |
|
return xs_pad, ys_pad |
|
|
|
def translate(self, x, trans_args, char_list=None): |
|
"""Translate source text. |
|
|
|
:param list x: input source text feature (T,) |
|
:param Namespace trans_args: argment Namespace contraining options |
|
:param list char_list: list of characters |
|
:return: N-best decoding results |
|
:rtype: list |
|
""" |
|
self.eval() |
|
assert isinstance(x, list) |
|
|
|
|
|
if self.multilingual: |
|
x = to_device( |
|
self, torch.from_numpy(np.fromiter(map(int, x[0][1:]), dtype=np.int64)) |
|
) |
|
else: |
|
x = to_device( |
|
self, torch.from_numpy(np.fromiter(map(int, x[0]), dtype=np.int64)) |
|
) |
|
|
|
logging.info("input lengths: " + str(x.size(0))) |
|
xs_pad = x.unsqueeze(0) |
|
tgt_lang = None |
|
if trans_args.tgt_lang: |
|
tgt_lang = char_list.index(trans_args.tgt_lang) |
|
xs_pad, _ = self.target_forcing(xs_pad, tgt_lang=tgt_lang) |
|
h, _ = self.encoder(xs_pad, None) |
|
logging.info("encoder output lengths: " + str(h.size(1))) |
|
|
|
|
|
beam = trans_args.beam_size |
|
penalty = trans_args.penalty |
|
|
|
if trans_args.maxlenratio == 0: |
|
maxlen = h.size(1) |
|
else: |
|
|
|
maxlen = max(1, int(trans_args.maxlenratio * h.size(1))) |
|
minlen = int(trans_args.minlenratio * h.size(1)) |
|
logging.info("max output length: " + str(maxlen)) |
|
logging.info("min output length: " + str(minlen)) |
|
|
|
|
|
hyp = {"score": 0.0, "yseq": [self.sos]} |
|
hyps = [hyp] |
|
ended_hyps = [] |
|
|
|
for i in range(maxlen): |
|
logging.debug("position " + str(i)) |
|
|
|
|
|
ys = h.new_zeros((len(hyps), i + 1), dtype=torch.int64) |
|
for j, hyp in enumerate(hyps): |
|
ys[j, :] = torch.tensor(hyp["yseq"]) |
|
ys_mask = subsequent_mask(i + 1).unsqueeze(0).to(h.device) |
|
|
|
local_scores = self.decoder.forward_one_step( |
|
ys, ys_mask, h.repeat([len(hyps), 1, 1]) |
|
)[0] |
|
|
|
hyps_best_kept = [] |
|
for j, hyp in enumerate(hyps): |
|
local_best_scores, local_best_ids = torch.topk( |
|
local_scores[j : j + 1], beam, dim=1 |
|
) |
|
|
|
for j in range(beam): |
|
new_hyp = {} |
|
new_hyp["score"] = hyp["score"] + float(local_best_scores[0, j]) |
|
new_hyp["yseq"] = [0] * (1 + len(hyp["yseq"])) |
|
new_hyp["yseq"][: len(hyp["yseq"])] = hyp["yseq"] |
|
new_hyp["yseq"][len(hyp["yseq"])] = int(local_best_ids[0, j]) |
|
|
|
hyps_best_kept.append(new_hyp) |
|
|
|
hyps_best_kept = sorted( |
|
hyps_best_kept, key=lambda x: x["score"], reverse=True |
|
)[:beam] |
|
|
|
|
|
hyps = hyps_best_kept |
|
logging.debug("number of pruned hypothes: " + str(len(hyps))) |
|
if char_list is not None: |
|
logging.debug( |
|
"best hypo: " |
|
+ "".join([char_list[int(x)] for x in hyps[0]["yseq"][1:]]) |
|
) |
|
|
|
|
|
if i == maxlen - 1: |
|
logging.info("adding <eos> in the last postion in the loop") |
|
for hyp in hyps: |
|
hyp["yseq"].append(self.eos) |
|
|
|
|
|
|
|
remained_hyps = [] |
|
for hyp in hyps: |
|
if hyp["yseq"][-1] == self.eos: |
|
|
|
|
|
if len(hyp["yseq"]) > minlen: |
|
hyp["score"] += (i + 1) * penalty |
|
ended_hyps.append(hyp) |
|
else: |
|
remained_hyps.append(hyp) |
|
|
|
|
|
if end_detect(ended_hyps, i) and trans_args.maxlenratio == 0.0: |
|
logging.info("end detected at %d", i) |
|
break |
|
|
|
hyps = remained_hyps |
|
if len(hyps) > 0: |
|
logging.debug("remeined hypothes: " + str(len(hyps))) |
|
else: |
|
logging.info("no hypothesis. Finish decoding.") |
|
break |
|
|
|
if char_list is not None: |
|
for hyp in hyps: |
|
logging.debug( |
|
"hypo: " + "".join([char_list[int(x)] for x in hyp["yseq"][1:]]) |
|
) |
|
|
|
logging.debug("number of ended hypothes: " + str(len(ended_hyps))) |
|
|
|
nbest_hyps = sorted(ended_hyps, key=lambda x: x["score"], reverse=True)[ |
|
: min(len(ended_hyps), trans_args.nbest) |
|
] |
|
|
|
|
|
if len(nbest_hyps) == 0: |
|
logging.warning( |
|
"there is no N-best results, perform translation " |
|
"again with smaller minlenratio." |
|
) |
|
|
|
trans_args = Namespace(**vars(trans_args)) |
|
trans_args.minlenratio = max(0.0, trans_args.minlenratio - 0.1) |
|
return self.translate(x, trans_args, char_list) |
|
|
|
logging.info("total log probability: " + str(nbest_hyps[0]["score"])) |
|
logging.info( |
|
"normalized log probability: " |
|
+ str(nbest_hyps[0]["score"] / len(nbest_hyps[0]["yseq"])) |
|
) |
|
return nbest_hyps |
|
|
|
def calculate_all_attentions(self, xs_pad, ilens, ys_pad): |
|
"""E2E attention calculation. |
|
|
|
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax) |
|
:param torch.Tensor ilens: batch of lengths of input sequences (B) |
|
:param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax) |
|
:return: attention weights (B, H, Lmax, Tmax) |
|
:rtype: float ndarray |
|
""" |
|
self.eval() |
|
with torch.no_grad(): |
|
self.forward(xs_pad, ilens, ys_pad) |
|
ret = dict() |
|
for name, m in self.named_modules(): |
|
if isinstance(m, MultiHeadedAttention) and m.attn is not None: |
|
ret[name] = m.attn.cpu().numpy() |
|
self.train() |
|
return ret |
|
|