tobiasc's picture
Initial commit
ad16788
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Tomoki Hayashi
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Length regulator related modules."""
import logging
from distutils.version import LooseVersion
import torch
from espnet.nets.pytorch_backend.nets_utils import pad_list
is_torch_1_1_plus = LooseVersion(torch.__version__) >= LooseVersion("1.1")
class LengthRegulator(torch.nn.Module):
"""Length regulator module for feed-forward Transformer.
This is a module of length regulator described in
`FastSpeech: Fast, Robust and Controllable Text to Speech`_.
The length regulator expands char or
phoneme-level embedding features to frame-level by repeating each
feature based on the corresponding predicted durations.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(self, pad_value=0.0):
"""Initilize length regulator module.
Args:
pad_value (float, optional): Value used for padding.
"""
super(LengthRegulator, self).__init__()
self.pad_value = pad_value
if is_torch_1_1_plus:
self.repeat_fn = self._repeat_one_sequence
else:
self.repeat_fn = self._legacy_repeat_one_sequence
def forward(self, xs, ds, alpha=1.0):
"""Calculate forward propagation.
Args:
xs (Tensor): Batch of sequences of char or phoneme embeddings (B, Tmax, D).
ds (LongTensor): Batch of durations of each frame (B, T).
alpha (float, optional): Alpha value to control speed of speech.
Returns:
Tensor: replicated input tensor based on durations (B, T*, D).
"""
if alpha != 1.0:
assert alpha > 0
ds = torch.round(ds.float() * alpha).long()
if ds.sum() == 0:
logging.warning(
"predicted durations includes all 0 sequences. "
"fill the first element with 1."
)
# NOTE(kan-bayashi): This case must not be happend in teacher forcing.
# It will be happened in inference with a bad duration predictor.
# So we do not need to care the padded sequence case here.
ds[ds.sum(dim=1).eq(0)] = 1
return pad_list([self.repeat_fn(x, d) for x, d in zip(xs, ds)], self.pad_value)
def _repeat_one_sequence(self, x, d):
"""Repeat each frame according to duration for torch 1.1+."""
return torch.repeat_interleave(x, d, dim=0)
def _legacy_repeat_one_sequence(self, x, d):
"""Repeat each frame according to duration for torch 1.0.
Examples:
>>> x = torch.tensor([[1], [2], [3]])
tensor([[1],
[2],
[3]])
>>> d = torch.tensor([1, 2, 3])
tensor([1, 2, 3])
>>> self._repeat_one_sequence(x, d)
tensor([[1],
[2],
[2],
[3],
[3],
[3]])
"""
return torch.cat(
[x_.repeat(int(d_), 1) for x_, d_ in zip(x, d) if d_ != 0], dim=0
)