|
|
|
|
|
|
|
|
|
|
|
|
|
"""Positional Encoding Module.""" |
|
|
|
import math |
|
|
|
import torch |
|
|
|
|
|
def _pre_hook( |
|
state_dict, |
|
prefix, |
|
local_metadata, |
|
strict, |
|
missing_keys, |
|
unexpected_keys, |
|
error_msgs, |
|
): |
|
"""Perform pre-hook in load_state_dict for backward compatibility. |
|
|
|
Note: |
|
We saved self.pe until v.0.5.2 but we have omitted it later. |
|
Therefore, we remove the item "pe" from `state_dict` for backward compatibility. |
|
|
|
""" |
|
k = prefix + "pe" |
|
if k in state_dict: |
|
state_dict.pop(k) |
|
|
|
|
|
class PositionalEncoding(torch.nn.Module): |
|
"""Positional encoding. |
|
|
|
Args: |
|
d_model (int): Embedding dimension. |
|
dropout_rate (float): Dropout rate. |
|
max_len (int): Maximum input length. |
|
reverse (bool): Whether to reverse the input position. Only for |
|
the class LegacyRelPositionalEncoding. We remove it in the current |
|
class RelPositionalEncoding. |
|
|
|
""" |
|
|
|
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False): |
|
"""Construct an PositionalEncoding object.""" |
|
super(PositionalEncoding, self).__init__() |
|
self.d_model = d_model |
|
self.reverse = reverse |
|
self.xscale = math.sqrt(self.d_model) |
|
self.dropout = torch.nn.Dropout(p=dropout_rate) |
|
self.pe = None |
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) |
|
self._register_load_state_dict_pre_hook(_pre_hook) |
|
|
|
def extend_pe(self, x): |
|
"""Reset the positional encodings.""" |
|
if self.pe is not None: |
|
if self.pe.size(1) >= x.size(1): |
|
if self.pe.dtype != x.dtype or self.pe.device != x.device: |
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device) |
|
return |
|
pe = torch.zeros(x.size(1), self.d_model) |
|
if self.reverse: |
|
position = torch.arange( |
|
x.size(1) - 1, -1, -1.0, dtype=torch.float32 |
|
).unsqueeze(1) |
|
else: |
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) |
|
div_term = torch.exp( |
|
torch.arange(0, self.d_model, 2, dtype=torch.float32) |
|
* -(math.log(10000.0) / self.d_model) |
|
) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
self.pe = pe.to(device=x.device, dtype=x.dtype) |
|
|
|
def forward(self, x: torch.Tensor): |
|
"""Add positional encoding. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (batch, time, `*`). |
|
|
|
Returns: |
|
torch.Tensor: Encoded tensor (batch, time, `*`). |
|
|
|
""" |
|
self.extend_pe(x) |
|
x = x * self.xscale + self.pe[:, : x.size(1)] |
|
return self.dropout(x) |
|
|
|
|
|
class ScaledPositionalEncoding(PositionalEncoding): |
|
"""Scaled positional encoding module. |
|
|
|
See Sec. 3.2 https://arxiv.org/abs/1809.08895 |
|
|
|
Args: |
|
d_model (int): Embedding dimension. |
|
dropout_rate (float): Dropout rate. |
|
max_len (int): Maximum input length. |
|
|
|
""" |
|
|
|
def __init__(self, d_model, dropout_rate, max_len=5000): |
|
"""Initialize class.""" |
|
super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len) |
|
self.alpha = torch.nn.Parameter(torch.tensor(1.0)) |
|
|
|
def reset_parameters(self): |
|
"""Reset parameters.""" |
|
self.alpha.data = torch.tensor(1.0) |
|
|
|
def forward(self, x): |
|
"""Add positional encoding. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (batch, time, `*`). |
|
|
|
Returns: |
|
torch.Tensor: Encoded tensor (batch, time, `*`). |
|
|
|
""" |
|
self.extend_pe(x) |
|
x = x + self.alpha * self.pe[:, : x.size(1)] |
|
return self.dropout(x) |
|
|
|
|
|
class LegacyRelPositionalEncoding(PositionalEncoding): |
|
"""Relative positional encoding module (old version). |
|
|
|
Details can be found in https://github.com/espnet/espnet/pull/2816. |
|
|
|
See : Appendix B in https://arxiv.org/abs/1901.02860 |
|
|
|
Args: |
|
d_model (int): Embedding dimension. |
|
dropout_rate (float): Dropout rate. |
|
max_len (int): Maximum input length. |
|
|
|
""" |
|
|
|
def __init__(self, d_model, dropout_rate, max_len=5000): |
|
"""Initialize class.""" |
|
super().__init__( |
|
d_model=d_model, |
|
dropout_rate=dropout_rate, |
|
max_len=max_len, |
|
reverse=True, |
|
) |
|
|
|
def forward(self, x): |
|
"""Compute positional encoding. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (batch, time, `*`). |
|
|
|
Returns: |
|
torch.Tensor: Encoded tensor (batch, time, `*`). |
|
torch.Tensor: Positional embedding tensor (1, time, `*`). |
|
|
|
""" |
|
self.extend_pe(x) |
|
x = x * self.xscale |
|
pos_emb = self.pe[:, : x.size(1)] |
|
return self.dropout(x), self.dropout(pos_emb) |
|
|
|
|
|
class RelPositionalEncoding(torch.nn.Module): |
|
"""Relative positional encoding module (new implementation). |
|
|
|
Details can be found in https://github.com/espnet/espnet/pull/2816. |
|
|
|
See : Appendix B in https://arxiv.org/abs/1901.02860 |
|
|
|
Args: |
|
d_model (int): Embedding dimension. |
|
dropout_rate (float): Dropout rate. |
|
max_len (int): Maximum input length. |
|
|
|
""" |
|
|
|
def __init__(self, d_model, dropout_rate, max_len=5000): |
|
"""Construct an PositionalEncoding object.""" |
|
super(RelPositionalEncoding, self).__init__() |
|
self.d_model = d_model |
|
self.xscale = math.sqrt(self.d_model) |
|
self.dropout = torch.nn.Dropout(p=dropout_rate) |
|
self.pe = None |
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) |
|
|
|
def extend_pe(self, x): |
|
"""Reset the positional encodings.""" |
|
if self.pe is not None: |
|
|
|
|
|
if self.pe.size(1) >= x.size(1) * 2 - 1: |
|
if self.pe.dtype != x.dtype or self.pe.device != x.device: |
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device) |
|
return |
|
|
|
|
|
|
|
pe_positive = torch.zeros(x.size(1), self.d_model) |
|
pe_negative = torch.zeros(x.size(1), self.d_model) |
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) |
|
div_term = torch.exp( |
|
torch.arange(0, self.d_model, 2, dtype=torch.float32) |
|
* -(math.log(10000.0) / self.d_model) |
|
) |
|
pe_positive[:, 0::2] = torch.sin(position * div_term) |
|
pe_positive[:, 1::2] = torch.cos(position * div_term) |
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) |
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) |
|
|
|
|
|
|
|
|
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) |
|
pe_negative = pe_negative[1:].unsqueeze(0) |
|
pe = torch.cat([pe_positive, pe_negative], dim=1) |
|
self.pe = pe.to(device=x.device, dtype=x.dtype) |
|
|
|
def forward(self, x: torch.Tensor): |
|
"""Add positional encoding. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (batch, time, `*`). |
|
|
|
Returns: |
|
torch.Tensor: Encoded tensor (batch, time, `*`). |
|
|
|
""" |
|
self.extend_pe(x) |
|
x = x * self.xscale |
|
pos_emb = self.pe[ |
|
:, |
|
self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 + x.size(1), |
|
] |
|
return self.dropout(x), self.dropout(pos_emb) |
|
|