Spaces:
Runtime error
Runtime error
File size: 4,422 Bytes
ca1f90f 884a837 ca1f90f 884a837 ca1f90f 884a837 3b14a4f 884a837 ca1f90f 884a837 ca1f90f 884a837 ca1f90f 884a837 ca1f90f 884a837 ca1f90f 884a837 ca1f90f 884a837 3b14a4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import io
from io import BytesIO
import gradio as gr
import requests
import torch
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from diffusers import StableDiffusionInpaintPipeline
from PIL import Image, ImageOps
import PIL
import replicate
import os
# cuda cpu
device_name = 'cpu'
device = torch.device(device_name)
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model_clip = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
os.environ['REPLICATE_API_TOKEN'] = '16ea7157b65a155892e29298b6ddac479a12e819'
model_name = 'cjwbw/stable-diffusion-v2-inpainting'
model = replicate.models.get(model_name)
version = model.versions.get("f9bb0632bfdceb83196e85521b9b55895f8ff3d1d3b487fd1973210c0eb30bec")
def numpy_to_pil(images):
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def get_mask(text, image):
inputs = processor(
text=[text], images=[image], padding="max_length", return_tensors="pt"
).to(device)
outputs = model_clip(**inputs)
mask = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy()
mask_pil = numpy_to_pil(mask)[0].resize(image.size)
#mask_pil.show()
return mask_pil
def image_to_byte_array(image: Image) -> bytes:
# BytesIO is a file-like buffer stored in memory
imgByteArr = io.BytesIO()
# image.save expects a file-like as a argument
image.save(imgByteArr, format='PNG')
# Turn the BytesIO object back into a bytes object
#imgByteArr = imgByteArr.getvalue()
return imgByteArr
def predict(prompt, negative_prompt, image, obj2mask):
mask = get_mask(obj2mask, image)
image = image.convert("RGB").resize((512, 512))
mask_image = mask.convert("RGB").resize((512, 512))
mask_image = ImageOps.invert(mask_image)
# open("/home/tobias/WorkspageBE/replicate/tenis.png", "rb")
# io.BufferedReader(image_to_byte_array(image))
inputs = {
# Input prompt
'prompt': prompt,
# Inital image to generate variations of. Supproting images size with
# 512x512
'image': image_to_byte_array(image),
# Black and white image to use as mask for inpainting over the image
# provided. Black pixels are inpainted and white pixels are preserved
'mask': image_to_byte_array(mask_image),
# Prompt strength when using init image. 1.0 corresponds to full
# destruction of information in init image
'prompt_strength': 0.8,
# Number of images to output. Higher number of outputs may OOM.
# Range: 1 to 8
'num_outputs': 1,
# Number of denoising steps
# Range: 1 to 500
'num_inference_steps': 50,
# Scale for classifier-free guidance
# Range: 1 to 20
'guidance_scale': 7.5,
# Random seed. Leave blank to randomize the seed
# 'seed': ...,
}
output = version.predict(**inputs)
response = requests.get(output[0])
img_final = Image.open(BytesIO(response.content))
mask = mask_image.convert('L')
PIL.Image.composite(img_final, image, mask)
return (img_final)
def inference(prompt, negative_prompt, obj2mask, image_numpy):
generator = torch.Generator()
generator.manual_seed(int(52362))
image = numpy_to_pil(image_numpy)[0].convert("RGB").resize((512, 512))
img = predict(prompt, negative_prompt, image, obj2mask)
return img
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="cinematic, advertisement, sharpe focus, ad, ads")
negative_prompt = gr.Textbox(label="Negative Prompt", value="text, written")
mask = gr.Textbox(label="Mask", value="shoe")
intput_img = gr.Image()
run = gr.Button(value="Generate")
with gr.Column():
output_img = gr.Image()
run.click(
inference,
inputs=[prompt, negative_prompt, mask, intput_img
],
outputs=output_img,
)
demo.queue(concurrency_count=1)
demo.launch()
|